Morphofunctional characteristics of the vessels of the small circle of blood circulation in those who died from severe and extremely severe forms of new coronavirus infection
Aleksey M. Emelin , Irina P. Sorochanu , Zakhar P. Asaulenko , Vasilii А. Rogovoy , Oleg S. Popov , Sergei V. Mosenko , Svetlana V. Apalko , Anton S. Buchaka , Sergey V. Gladchenko , Anna Yu. Anisenkova , Sergey G. Shcherbak , Roman V. Deev
Morphology ›› 2023, Vol. 161 ›› Issue (3) : 39 -52.
Morphofunctional characteristics of the vessels of the small circle of blood circulation in those who died from severe and extremely severe forms of new coronavirus infection
BACKGROUND: An important feature of COVID-19 is the development of pronounced hypercoagulation with an increased risk of thrombotic damage to the pulmonary vascular bed, mainly the pulmonary arteries. Thrombosis of the pulmonary blood vessels causes a local violation of hemodynamics with the development of hyperemia, edema, which leads to a decrease in ventilation of the lung tissue area and serves as one of the causes of respiratory failure.
AIM: This study aimed to conduct a morphological and morphometric analysis of the vascular bed of lung tissues in deceased with severe and extremely severe forms of new coronavirus infection who were on inpatient treatment in the period 2020–2022.
MATERIALS AND METHODS: A pathomorphologic study of 129 autopsy cases with a confirmed diagnosis of a new coronavirus infection COVID-19 was performed. Morphometric analysis and statistical data processing of the pulmonary vascular system in histologic preparations stained with hematoxylin and eosin stain, orcein stain and Martius Scarlet Blue (MSB) stain was performed. The control group consisted of 14 patients who died of cardiovascular disease with bilateral focal confluent pneumonia.
RESULTS: It was found that the proportion of thrombosed vessels in the lung tissues of the deceased was 27.6%. In 87.2% of cases, thrombosis develops in small arteries (lumen diameter 30-500 microns) and small veins (lumen diameter 40–500 microns). The vascular-functional indices of Kernogan and Vogenworth were statistically significantly increased in small arteries and small veins of the 4th order (p=0.001), small arteries (p=0.001) and small veins of the 5th order (p=0.014) compared with the control group.
CONCLUSIONS: Diffuse involvement of small caliber blood vessels in the pathological process reflects the severity of specific hemocoagulopathic disorders in the lung tissue. Such disorders lead to the development of ventilation-perfusion disorders and entail an increase in right ventricular failure.
COVID-19 / thrombosis / thromboembolism / pulmonary circulation
| [1] |
Bian XW, COVID-19 Pathology Team. Autopsy of COVID-19 patients in China. Natl Sci Rev. 2020;7(9):1414–1418. doi: 10.1093/nsr/nwaa123 |
| [2] |
Bian X.W., COVID-19 Pathology Team. Autopsy of COVID-19 patients in China // National Science Review. 2020. Vol. 7, N 4. P. 1414–1418. doi: 10.1093/nsr/nwaa123 |
| [3] |
Rybakova MG, Karev VE, Kuznetsova IA. Anatomical pathology of novel coronavirus (COVID-19) infection. First impressions. Arkhiv Patologii. 2020;82(5):5–15. EDN: KRELVX doi: 10.17116/patol2020820515 |
| [4] |
Рыбакова М.Г., Карев В.Е., Кузнецова И.А. Патологическая анатомия новой коронавирусной инфекции COVID-19 // Архив патологии. 2020. Т. 82, № 5. С. 5–15. EDN: KRELVX doi: 10.17116/patol2020820515 |
| [5] |
Deev RV, Asaulenko ZP, Emelin AM, et al. The experience of clinical and morphological analysis of fatal cases of coronavirus infection of the “first wave” (spring-autumn 2020). Profilakticheskaya i klinicheskaya meditsina. 2021;(4):90–99. EDN: TVGIOQ doi: 10.47843/2074-9120_2021_4_90 |
| [6] |
Деев Р.В., Асауленко З.П., Емелин А.М., и др. Опыт клинико-морфологического анализа летальных случаев коронавирусной инфекции «первой волны» (весна-осень 2020 г.) // Профилактическая и клиническая медицина. 2021. № 4. С. 90–99. EDN: TVGIOQ doi: 10.47843/2074-9120_2021_4_90 |
| [7] |
Blagova OV, Kogan EA. Myocarditis during the SARS-CoV-2 pandemic. Moscow: Prakticheskaya meditsina; 2023. (In Russ). |
| [8] |
Благова О.В., Коган Е.А. Миокардит в период пандемии SARS-CoV-2. Москва: Практическая медицина, 2023. |
| [9] |
Jenner WJ, Kanji R, Mirsadraee S, et al. Thrombotic complications in 2928 patients with COVID-19 treated in intensive care: a systematic review. J Thromb Thrombolysis. 2021;51(3):595–607. doi: 10.1007/s11239-021-02394-7 |
| [10] |
Jenner W.J., Kanji R., Mirsadraee S., et al. Thrombotic complications in 2928 patients with COVID-19 treated in intensive care: a systematic review // J Thromb Thrombolysis. 2021. Vol. 51, N 3. P. 595–607. doi: 10.1007/s11239-021-02394-7 |
| [11] |
Jiménez D, García-Sanchez A, Rali P, et al. Incidence of VTE and bleeding among hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis. Chest. 2021;159(3):1182–1196. doi: 10.1016/j.chest.2020.11.005 |
| [12] |
Jiménez D., García-Sanchez A., Rali P., et al. Incidence of VTE and bleeding among hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis // Chest. 2021. Vol. 159, N 3. P. 1182–1196. doi: 10.1016/j.chest.2020.11.005 |
| [13] |
Manolis AS, Manolis TA, Manolis AA, et al. COVID-19 infection: viral macro- and micro-vascular coagulopathy and thromboembolism/prophylactic and therapeutic management. J Cardiovasc Pharmacol Ther. 2021;26(1):12–24. doi: 10.1177/1074248420958973 |
| [14] |
Manolis A.S., Manolis T.A., Manolis A.A., et al. COVID-19 infection: viral macro- and micro-vascular coagulopathy and thromboembolism/prophylactic and therapeutic management // J Cardiovasc Pharmacol Ther. 2021. Vol. 26, N 1. P. 12–24. doi: 10.1177/1074248420958973 |
| [15] |
Oba S, Hosoya T, Amamiya M, et al. Arterial and venous thrombosis complicated in COVID-19: a retrospective single center analysis in Japan. Front Cardiovasc Med. 2021;8:767074. doi: 10.3389/fcvm.2021.767074 |
| [16] |
Oba S., Hosoya T., Amamiya M., et al. Arterial and venous thrombosis complicated in COVID-19: a retrospective single center analysis in Japan // Front Cardiovasc Med. 2021. Vol. 8. P. 767074. doi: 10.3389/fcvm.2021.767074 |
| [17] |
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847. doi: 10.1111/jth.14768 |
| [18] |
Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia // J Thromb Haemost. 2020. Vol. 18, N 4. P. 844–847. doi: 10.1111/jth.14768 |
| [19] |
Fang XZ, Wang YX, Xu JQ, et al. Immunothrombosis in acute respiratory dysfunction of COVID-19. Front Immunol. 2021;12:651545. doi: 10.3389/fimmu.2021.651545 |
| [20] |
Fang X.Z., Wang Y.X., Xu J.Q., et al. Immunothrombosis in acute respiratory dysfunction of COVID-19 // Front Immunol. 2021. Vol. 12. P. 651545. doi: 10.3389/fimmu.2021.651545 |
| [21] |
Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517–528. doi: 10.1007/s00281-017-0639-8 |
| [22] |
Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis // Semin Immunopathol. 2017. Vol. 39, N 5. P. 517–528. doi: 10.1007/s00281-017-0639-8 |
| [23] |
Niculae CM, Hristea A, Moroti R. Mechanisms of COVID-19 associated pulmonary thrombosis: a narrative review. Biomedicines. 2023;11(3):929. doi: 10.3390/biomedicines11030929 |
| [24] |
Niculae C.M., Hristea A., Moroti R. Mechanisms of COVID-19 associated pulmonary thrombosis: a narrative review // Biomedicines. 2023. Vol. 11, N 3. P. 929. doi: 10.3390/biomedicines11030929 |
| [25] |
Thachil J, Srivastava A. SARS-2 coronavirus-associated hemostatic lung abnormality in COVID-19: is it pulmonary thrombosis or pulmonary embolism? Semin Thromb Hemost. 2020;46(7):777–780. doi: 10.1055/s-0040-1712155 |
| [26] |
Thachil J., Srivastava A. SARS-2 coronavirus-associated hemostatic lung abnormality in COVID-19: is it pulmonary thrombosis or pulmonary embolism? // Semin Thromb Hemost. 2020. Vol. 46, N 7. P. 777–780. doi: 10.1055/s-0040-1712155 |
| [27] |
Khismatullin RR, Ponomareva AA, Nagaswami C, et al. Pathology of lung-specific thrombosis and inflammation in COVID-19. J Thromb Haemost. 2021;19(12):3062–3072. doi: 10.1111/jth.15532 |
| [28] |
Khismatullin R.R., Ponomareva A.A., Nagaswami C., et al. Pathology of lung-specific thrombosis and inflammation in COVID-19 // J Thromb Haemost. 2021. Vol. 19, N 12. P. 3062–3072. doi: 10.1111/jth.15532 |
| [29] |
Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. doi: 10.1016/j.thromres.2020.04.013 |
| [30] |
Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19 // Thromb Res. 2020. Vol. 191. P. 145–147. doi: 10.1016/j.thromres.2020.04.013 |
| [31] |
Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020;18(7):1743–1746. doi: 10.1111/jth.14869 |
| [32] |
Llitjos J.F., Leclerc M., Chochois C., et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients // J Thromb Haemost. 2020. Vol. 18, N 7. P. 1743–1746. doi: 10.1111/jth.14869 |
| [33] |
Suh YJ, Hong H, Ohana M, et al. Pulmonary embolism and deep vein thrombosis in COVID-19: a systematic review and meta-analysis. Radiology. 2021;298(2):E70–E80. doi: 10.1148/radiol.2020203557 |
| [34] |
Suh Y.J., Hong H., Ohana M., et al. Pulmonary embolism and deep vein thrombosis in COVID-19: a systematic review and meta-analysis // Radiology. 2021. Vol. 298, N 2. P. E70–E80. doi: 10.1148/radiol.2020203557 |
| [35] |
Porembskaya OYA, Kravchuk VN, Galchenko MI, et al. Pulmonary vascular thrombosis in COVID-19: clinical and morphological parallels. Rational Pharmacotherapy in Cardiology. 2022;18(4):376–384. EDN: HTTTBO doi: 10.20996/1819-6446-2022-08-01 |
| [36] |
Порембская О.Я., Кравчук В.Н., Гальченко М.И., и др. Тромбоз сосудистого русла легких при COVID-19: клинико-морфологические параллели // Рациональная фармакотерапия в кардиологии. 2022. Т. 18, № 4. С. 376–384. EDN: HTTTBO doi: 10.20996/1819-6446-2022-08-01 |
| [37] |
Singhal S, Henderson R, Horsfield K, et al. Morphometry of the human pulmonary arterial tree. Circ Res. 1973;33(2):190–197. doi: 10.1161/01.res.33.2.190 |
| [38] |
Singhal S., Henderson R., Horsfield K., et al. Morphometry of the human pulmonary arterial tree // Circ Res. 1973. Vol. 33, N 2. P. 190–197. doi: 10.1161/01.res.33.2.190 |
| [39] |
Staub NC, Schultz EL. Pulmonary capillary length in dogs, cat and rabbit. Respir Physiol. 1968;5(3):371–378. doi: 10.1016/0034-5687(68)90028-5 |
| [40] |
Staub N.C., Schultz E.L. Pulmonary capillary length in dogs, cat and rabbit // Respir Physiol. 1968. Vol. 5, N 3. P. 371–378. doi: 10.1016/0034-5687(68)90028-5 |
| [41] |
Studenikina ED, Ogorelysheva AI, Ruzov YaS, et all. Role of the immune system in COVID-19 pathomorphogenesis. Genes & cells. 2020;15(4):75–87. EDN: WLEERS doi: 10.23868/202012013 |
| [42] |
Студеникина Е.Д., Огорелышева А.И., Рузов Я.С., и др. Роль иммунной системы в патоморфогенезе COVID-19 // Гены и клетки. 2020. Т. 15, № 4. С. 75–87. EDN: WLEERS doi: 10.23868/202012013 |
| [43] |
Bain CC, Lucas CD, Rossi AG. Pulmonary macrophages and SARS-Cov2 infection. Int Rev Cell Mol Biol. 2022;367:1–28. doi: 10.1016/bs.ircmb.2022.01.001 |
| [44] |
Bain C.C., Lucas C.D., Rossi A.G. Pulmonary macrophages and SARS-Cov2 infection // Int Rev Cell Mol Biol. 2022. Vol. 367. P. 1–28. doi: 10.1016/bs.ircmb.2022.01.001 |
| [45] |
Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575–e582. doi: 10.1016/S2352-3026(20)30216-7 |
| [46] |
Goshua G., Pine A.B., Meizlish M.L., et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study // Lancet Haematol. 2020. Vol. 7, N 8. P. e575–e582. doi: 10.1016/S2352-3026(20)30216-7 |
| [47] |
Hottz ED, Martins-Gonçalves R, Palhinha L, et al. Platelet-monocyte interaction amplifies thromboinflammation through tissue factor signaling in COVID-19. Blood Adv. 2022;6(17):5085–5099. doi: 10.1182/bloodadvances.2021006680 |
| [48] |
Hottz E.D., Martins-Gonçalves R., Palhinha L., et al. Platelet-monocyte interaction amplifies thromboinflammation through tissue factor signaling in COVID-19 // Blood Adv. 2022. Vol. 6, N 17. P. 5085–5099. doi: 10.1182/bloodadvances.2021006680 |
| [49] |
Lim MS, Mcrae S. COVID-19 and immunothrombosis: pathophysiology and therapeutic implications. Crit Rev Oncol Hematol. 2021;168:103529. doi: 10.1016/j.critrevonc.2021.103529 |
| [50] |
Lim M.S., Mcrae S. COVID-19 and immunothrombosis: pathophysiology and therapeutic implications // Crit Rev Oncol Hematol. 2021. Vol. 168. P. 103529. doi: 10.1016/j.critrevonc.2021.103529 |
| [51] |
Zuo Y, Zuo M, Yalavarthi S, et al. Neutrophil extracellular traps and thrombosis in COVID-19. J Thromb Thrombolysis. 2021;51(2):446–453. doi: 10.1007/s11239-020-02324-z |
| [52] |
Zuo Y., Zuo M., Yalavarthi S., et al. Neutrophil extracellular traps and thrombosis in COVID-19 // J Thromb Thrombolysis. 2021. Vol. 51, N 2. P. 446–453. doi: 10.1007/s11239-020-02324-z |
| [53] |
Porembskaya O, Lobastov K, Pashovkina O, et al. Thrombosis of pulmonary vasculature despite anticoagulation and thrombolysis: the findings from seven autopsies. Thrombosis Update. 2020;1:100017. EDN: XQOBFE doi: 10.1016/j.tru.2020.100017 |
| [54] |
Porembskaya O., Lobastov K., Pashovkina O., et al. Thrombosis of pulmonary vasculature despite anticoagulation and thrombolysis: the findings from seven autopsies // Thrombosis Update. 2020. Vol. 1. P. 100017. EDN: XQOBFE doi: 10.1016/j.tru.2020.100017 |
| [55] |
Hariri LP, North CM, Shih AR, et al. Lung histopathology in coronavirus disease 2019 as compared with severe acute respiratory syndrome and H1N1 influenza: a systematic review. Chest. 2021;159(1):73–84. doi: 10.1016/j.chest.2020.09.259 |
| [56] |
Hariri L.P., North C.M., Shih A.R., et al. Lung histopathology in coronavirus disease 2019 as compared with severe acute respiratory sydrome and H1N1 influenza: a systematic review // Chest. 2021. Vol. 159, N 1. P. 73–84. doi: 10.1016/j.chest.2020.09.259 |
| [57] |
Chirskii VS, Plaminskii DYu. Functional morphology of the pulmonary vascular bed in COVID-19. In: Morfologiya na rubezhe vekov. Proceedings of the All-Russian Jubilee Scientific Conference dedicated to the 100th anniversary of the birth of the Hero of the Soviet Union, Major General of the Medical Service, Professor EA Dyskin; 2023 Jan 14; Saint-Petersburg. Saint-Petersburg: S.M. Kirov Military Medical Academy; 2023. P. 108–112. EDN: BVFGHP |
| [58] |
Чирский В.С., Пламинский Д.Ю. Функциональная морфология сосудистого русла легких при COVID-19. В кн.: Морфология на рубеже веков. Материалы Всероссийской юбилейной научной конференции, посвященной 100-летию со дня рождения Героя Советского Союза генерал-майора медицинской службы профессора Е.А. Дыскина; Январь 14, 2023; Санкт-Петербург. Санкт-Петербург: Военно-медицинская академия имени С.М. Кирова, 2023. С. 108–112. EDN: BVFGHP |
| [59] |
Matthews JC, McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev. 2008;4(1):49–59. doi: 10.2174/157340308783565384 |
| [60] |
Matthews J.C., McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management // Curr Cardiol Rev. 2008. Vol. 4, N 1. P. 49–59. doi: 10.2174/157340308783565384 |
Eco-Vector
/
| 〈 |
|
〉 |