Distribution of vimentin in the human pancreatic islets in type 2 diabetes mellitus

Yuliya S. Krivova , Alexandra E. Proshchina , Dmitri A. Otlyga , Sergey V. Saveliev

Morphology ›› 2023, Vol. 161 ›› Issue (3) : 19 -30.

PDF
Morphology ›› 2023, Vol. 161 ›› Issue (3) : 19 -30. DOI: 10.17816/morph.624118
Original Study Articles
research-article

Distribution of vimentin in the human pancreatic islets in type 2 diabetes mellitus

Author information +
History +
PDF

Abstract

BACKGROUND: The expression of vimentin, an intermediate filament protein, has been detected in pancreatic islet cells of individuals with type 2 diabetes (T2D). Some studies have suggested that vimentin is expressed in differentiating β-cells during the restoration of their mass in diabetes. According to an alternative hypothesis, vimentin activation occurs in β-cells undergoing dedifferentiation and reprogramming into α-cells leading to a decrease in β-cell mass and T2D development. However, no studies have simultaneously evaluated the distribution of vimentin and alterations in the endocrine pancreas in T2D.

AIM: The study aimed to compare the distribution of vimentin in the human pancreatic islets with the characteristics of the endocrine pancreas in T2D and in the absence of carbohydrate metabolism disorders.

MATERIALS AND METHODS: Pancreatic autopsy samples from 13 individuals with T2D and 9 without carbohydrate metabolism disorders (comparison group) were investigated using double immunofluorescent staining with antibodies to vimentin and either insulin or glucagon. Using morphometric method and statistical analysis, the following parameters were measured and compared in individuals with T2D and those without carbohydrate metabolism disorders: distribution density of islets, average diameter of islets, relative area of β-cells, relative area of α-cells, percentage of islets containing vimentin-positive cells, average number of vimentin-positive cells per islet, percentage of vimentin-positive cells containing insulin, and percentage of vimentin-positive cells containing glucagon.

RESULTS: Vimentin-positive cells, some of which simultaneously contained insulin or glucagon, were detected in the pancreatic islets of individuals with T2D and those without carbohydrate metabolism disorders. Quantitatively, all parameters reflecting the distribution of vimentin were increased in individuals with T2D. Along with this, the relative area of α-cells increased, and the β-cell to α-cell ratio decreased in individuals with T2D.

CONCLUSIONS: An increase in the number of vimentin-positive cells in the pancreatic islets of individuals with T2D was associated with an increase in the relative area of α-cells. The activation of vimentin expression in islet cells was assumed to be related to the effect of hyperglycemia or other metabolic factors associated with diabetes and, probably, reflected the dedifferentiation and reprogramming processes of islet cells that are triggered in diabetes.

Keywords

pancreas / pancreatic islets / type 2 diabetes mellitus / vimentin / insulin / glucagon

Cite this article

Download citation ▾
Yuliya S. Krivova, Alexandra E. Proshchina, Dmitri A. Otlyga, Sergey V. Saveliev. Distribution of vimentin in the human pancreatic islets in type 2 diabetes mellitus. Morphology, 2023, 161(3): 19-30 DOI:10.17816/morph.624118

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cole L, Anderson M, Antin PB, Limesand SW. One process for pancreatic beta-cell coalescence into islets involves an epithelial-mesenchymal transition. J Endocrinol. 2009;203(1):19–31. doi: 10.1677/JOE-09-0072

[2]

Cole L., Anderson M., Antin P.B., Limesand S.W. One process for pancreatic β-cell coalescence into islets involves an epithelial–mesenchymal transition // J Endocrinol. 2009. Vol. 203, N 1. P. 19–31. doi: 10.1677/JOE-09-0072

[3]

Di Bella A, Regoli M, Nicoletti C, et al. An appraisal of intermediate filament expression in adult and developing pancreas: vimentin is expressed in alpha cells of rat and mouse embryos. J Histochem Cytochem. 2009;57(6):577–586. doi: 10.1369/jhc.2009.952861

[4]

Di Bella A., Regoli M., Nicoletti C., et al. An appraisal of intermediate filament expression in adult and developing pancreas: vimentin is expressed in α cells of rat and mouse embryos // J Histochem Cytochem. 2009. Vol. 57, N 6. P. 577–586. doi: 10.1369/jhc.2009.952861

[5]

Ko SH, Suh SH, Kim BJ, et al. Expression of the intermediate filament vimentin in proliferating duct cells as a marker of pancreatic precursor cells. Pancreas. 2004;28(2):121–128. doi: 10.1097/00006676-200403000-00002

[6]

Ko S.H., Suh S.H., Kim B.J., et al. Expression of the intermediate filament vimentin in proliferating duct cells as a marker of pancreatic precursor cells // Pancreas. 2004. Vol. 28, N 2. P. 121–128. doi: 10.1097/00006676-200403000-00002

[7]

Krivova YuS, Proshchina AE, Otlyga DA, Saveliev SV. Distribution of vimentin in the human pancreatic epithelial cells during prenatal development. Clinical and Experimental Morphology. 2017;(2):21–27. EDN: ZFIEBB

[8]

Кривова Ю.С., Прощина А.Е., Отлыга Д.А., Савельев С.В. Распределение виментина в эпителиальных клетках поджелудочной железы человека в период внутриутробного развития // Клиническая и экспериментальная морфология. 2017. № 22. С. 21–27. EDN: ZFIEBB

[9]

Fanjul M, Gmyr V, Sengenès C, et al. Evidence for epithelial-mesenchymal transition in adult human pancreatic exocrine cells. J Histochem Cytochem. 2010;58(9):807–823. doi: 10.1369/jhc.2010.955807

[10]

Fanjul M., Gmyr V., Sengenès C., et al. Evidence for epithelial-mesenchymal transition in adult human pancreatic exocrine cells // J Histochem Cytochem. 2010. Vol. 58, N 9. P. 807–823. doi: 10.1369/jhc.2010.955807

[11]

Roefs MM, Carlotti F, Jones K, et al. Increased vimentin in human α- and β-cells in type 2 diabetes. J Endocrinol. 2017;233(3):217–227. doi: 10.1530/JOE-16-0588

[12]

Roefs M.M., Carlotti F., Jones K., et al. Increased vimentin in human α- and β-cells in type 2 diabetes // J Endocrinol. 2017. Vol. 233, N 3. P. 217–227. doi: 10.1530/JOE-16-0588

[13]

White MG, Marshall HL, Rigby R, et al. Expression of mesenchymal and α-cell phenotypic markers in islet β-cells in recently diagnosed diabetes. Diabetes Care. 2013;36(11):3818–3820. doi: 10.2337/dc13-0705

[14]

White M.G., Marshall H.L., Rigby R., et al. Expression of mesenchymal and α-cell phenotypic markers in islet β-cells in recently diagnosed diabetes // Diabetes Care. 2013. Vol. 36, N 11. P. 3818–3820. doi: 10.2337/dc13-0705

[15]

Chiang MK, Melton DA. Single-cell transcript analysis of pancreas development. Dev Cell. 2003;4(3):383–393. doi: 10.1016/s1534-5807(03)00035-2

[16]

Chiang M.K., Maelton D.A. Single-cell transcript analysis of pancreas development // Dev Cell. 2003. Vol. 4, N 3. P. 383–393. doi: 10.1016/s1534-5807(03)00035-2

[17]

Nakaya Y, Sheng G. EMT in developmental morphogenesis. Cancer Lett. 2013;341(1):9–15. doi: 10.1016/j.canlet.2013.02.037

[18]

Nakaya Y., Sheng G. EMT in developmental morphogenesis // Cancer Lett. 2013. Vol. 341, N 1. P. 9–15. doi: 10.1016/j.canlet.2013.02.037

[19]

Debnath P, Huirem RS, Dutta P, Palchaudhuri S. Epithelial-mesenchymal transition and its transcription factors. Biosci Rep. 2022;42(1):BSR20211754. doi: 10.1042/BSR20211754

[20]

Debnath P., Huirem R.S., Dutta P., Palchaudhuri S. Epithelial-mesenchymal transition and its transcription factors // Biosci Rep. 2022. Vol. 42, N 1. P. BSR20211754. doi: 10.1042/BSR20211754

[21]

Rukstalis JM, Habener JF. Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Expr Patterns. 2007;7(4):471–479. doi: 10.1016/j.modgep.2006.11.001

[22]

Rukstalis J.M., Habener J.F. Snail2, a mediator of epithelial–mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas // Gene Expr Patterns. 2007. Vol. 7, N 4. P. 471–479. doi: 10.1016/j.modgep.2006.11.001

[23]

Seeberger KL, Eshpeter A, Rajotte RV, Korbutt GS. Epithelial cells within the human pancreas do not coexpress mesenchymal antigens: epithelial-mesenchymal transition is an artifact of cell culture. Lab Invest. 2009;89(2):110–121. doi: 10.1038/labinvest.2008.122

[24]

Seeberger K.L., Eshpeter A., Rajotte R.V., Korbutt G.S. Epithelial cells within the human pancreas do not coexpress mesenchymal antigens: epithelial–mesenchymal transition is an artifact of cell culture // Lab Invest. 2009. Vol. 89, N 2. P. 110–121. doi: 10.1038/labinvest.2008.122

[25]

Krivova YS, Proshchina AE, Barabanov VM, et al. Immunohistochemical detection of vimentin in pancreatic islet β- and α-cells of macrosomic infants of diabetic and nondiabetic mothers. Early Hum Dev. 2018;117:44–49. doi: 10.1016/j.earlhumdev.2017.12.009

[26]

Krivova Y.S., Proshchina A.E., Barabanov V.M., et al. Immunohistochemical detection of vimentin in pancreatic islet β- and α-cells of macrosomic infants of diabetic and nondiabetic mothers // Early Hum Dev. 2018. Vol. 117. P. 44–49. doi: 10.1016/j.earlhumdev.2017.12.009

[27]

Cheng Y, Kang H, Shen J, et al. Beta-cell regeneration from vimentin+/MafB+ cells after STZ-induced extreme beta-cell ablation. Sci Rep. 2015;5:11703. doi: 10.1038/srep11703

[28]

Cheng Y., Kang H., Shen J., et al. Beta-cell regeneration from vimentin+/MafB+cells after STZ-induced extreme beta-cell ablation // Sci Rep. 2015. Vol. 5. P. 11703. doi: 10.1038/srep11703

[29]

Brereton MF, Iberl M, Shimomura K, et al. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nat Commun. 2014;5:4639. doi: 10.1038/ncomms5639

[30]

Brereton M.F., Iberl M., Shimomura K., et al. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose // Nat Commun. 2014. Vol. 5. P. 4639. doi: 10.1038/ncomms5639

[31]

Khin PP, Lee JH, Jun HS. A brief review of the mechanisms of β-cell dedifferentiation in type 2 diabetes. Nutrients. 2021;13(5):1593. doi: 10.3390/nu13051593

[32]

Khin P.P., Lee J.H., Jun H.S. A brief review of the mechanisms of β-cell dedifferentiation in type 2 diabetes // Nutrients. 2021. Vol. 13, N 5. P. 1593. doi: 10.3390/nu13051593

[33]

Talchai C, Xuan S, Lin HV, et al. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012;150(6):1223–1234. doi: 10.1016/j.cell.2012.07.029

[34]

Talchai C., Xuan S., Lin H.V., et al. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure // Cell. 2012. Vol. 150, N 6. P. 1223–1234. doi: 10.1016/j.cell.2012.07.029

[35]

Moreno-Amador JL, Téllez N, Marin S, et al. Epithelial to mesenchymal transition in human endocrine islet cells. PLoS One. 2018;13(1):e0191104. doi: 10.1371/journal.pone.0191104

[36]

Moreno-Amador J.L., Téllez N., Marin S., et al. Epithelial to mesenchymal transition in human endocrine islet cells // PLoS One. 2018. Vol. 13, N 1. P. e0191104. doi: 10.1371/journal.pone.0191104

[37]

Inaishi J, Saisho Y. Beta-cell mass in obesity and type 2 diabetes, and its relation to pancreas fat: a mini-review. Nutrients. 2020;12(12):3846. doi: 10.3390/nu12123846

[38]

Inaishi J., Saisho Y. Beta-cell mass in obesity and type 2 diabetes, and its relation to pancreas fat: a mini-review // Nutrients. 2020. Vol. 12, N 12. P. 3846. doi: 10.3390/nu12123846

[39]

Rahier J, Goebbels RM, Henquin JC. Cellular composition of the human diabetic pancreas. Diabetologia. 1983;24(5):366–371. doi: 10.1007/BF00251826

[40]

Rahier J., Goebbels R.M., Henquin J.C. Cellular composition of the human diabetic pancreas // Diabetologia. 1983. Vol. 24, N 5. P. 366–371. doi: 10.1007/BF00251826

Funding

Правительство РФGovernment of the Russian Federation(123053000048-6)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/