IInformation-reference system on human brain development
Alexandra E. Proshchina , Yevgeniy М. Dremin , Anastasia S. Kharlamova , Dmitriy A. Otlyga , Olga S. Godovalova , Yuliya S. Krivova , Evgeniya O. Grushetskaya , Sergey V. Saveliev
Morphology ›› 2023, Vol. 161 ›› Issue (1) : 27 -36.
IInformation-reference system on human brain development
BACKGROUND: Available information on the intrauterine maturation of the human brain is fragmentary; thus, the systematization of these data in the form of an information-reference system is needed. A modern solution would be the creation of a multimodal digital atlas, which would combine images of the developing brain at the macromorphological, tissue, and cellular levels.
AIM: This study aimed to create a prototype of an informational reference system on human brain development, incorporating a digital multimodal atlas with the ability to view specific brain regions.
METHODS: The creation of a prototype informational reference system on the prenatal morphogenesis of the human brain involved the following stages: researching the subject area, developing an informational model, defining automation tasks and functionality of the information system, selecting hardware and software tools, testing, and analyzing the results.
RESULTS: A prototype of the informational reference system “Human Brain Development Atlas” was developed, consisting of three main blocks for each ontogenetic stage: (1) description of the brain development stage, which includes a macroscopic description of the brain structure, an overview of key morphogenetic events, and galleries with hematoxylin and eosin-, Nissl-, and Mallory-stained sections; reference atlases, which contains annotated maps of brain sections at different stages of prenatal ontogenesis; and 3) immunohistochemical atlases, which provides data on the developmental translational profile of brain cells. Currently, some materials are already available on the project website: https://brainmorphology.science/ru/
CONCLUSIONS: Modern information technologies can be used for data collection and processing on the prenatal morphogenesis of the human brain. The creation of an informational reference system on the prenatal morphogenesis of the human brain can contribute to the development of new methods for early diagnosis and treatment of various nervous system disorders.
The data presented in this article were previously published in English in “Life” (doi: 10.3390/life13051182) and are published in “Morphology” in Russian with the consent of the authors and copyright holders and in accordance with the terms of the CC BY license of the primary article.
human brain atlas / human brain development / digital technologies / information-reference system
| [1] |
Proshchina AE, Kharlamova AS, Krivova YuS, Saveliev SV. Modern trends in brain mapping and atlasing. Clinical and Experimental Morphology. 2023;12(1):15–23. (In Russ). doi: 10.31088/CEM2023.12.1.15-23 |
| [2] |
Прощина А.Е., Харламова А.С., Кривова Ю.С., Савельев С.В. Современные тенденции картирования головного мозга // Клиническая и экспериментальная морфология. 2023. Т. 12, № 1. С. 15–23. doi: 10.31088/CEM2023.12.1.15-23 |
| [3] |
Gilbert TL. The Allen Brain Atlas as a resource for teaching undergraduate neuroscience. J Undergrad Neurosci Educ. 2018;16(3):A261–A267. |
| [4] |
Gilbert T.L. The Allen Brain Atlas as a resource for teaching undergraduate neuroscience // J Undergrad Neurosci Educ. 2018. Vol. 16, N 3. P. A261–A267. |
| [5] |
Zaborszky L. Brain structure and function: the first 15 years-a retrospective. Brain Struct Funct. 2021;226(8):2467–2475. doi: 10.1007/s00429-021-02362-0 |
| [6] |
Zaborszky L. Brain structure and function: the first 15 years- a retrospective // Brain Struct Funct. 2021. Vol. 226, N 8. P. 2467–2475. doi: 10.1007/s00429-021-02362-0 |
| [7] |
Nowinski WL. Evolution of human brain atlases in terms of content, applications, functionality, and availability. Neuroinformatics. 2021;19(1):1–22. doi: 10.1007/s12021-020-09481-9 |
| [8] |
Nowinski W.L. Evolution of human brain atlases in terms of content, applications, functionality, and availability // Neuroinformatics. 2021. Vol. 19, N 1. P. 1–22. doi: 10.1007/s12021-020-09481-9 |
| [9] |
Ding SL, Royall JJ, Sunkin SM, et al. Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol. 2016;524(16):3127–3481. doi: 10.1002/cne.24080 |
| [10] |
Ding S.L., Royall J.J., Sunkin S.M., et al. Comprehensive cellular-resolution atlas of the adult human brain // J Comp Neurol. 2016. Vol. 524, N 16. P. 3127–3481. doi: 10.1002/cne.24080 |
| [11] |
Bjaalie JG. Advances in computational neuroanatomy. Anat Embryol (Berl). 2001;204(4):253–254. doi: 10.1007/s00429-001-0217-6 |
| [12] |
Bjaalie J.G. Advances in computational neuroanatomy // Anat Embryol (Berl). 2001. Vol. 204, N 4. P. 253–254. doi: 10.1007/s00429-001-0217-6 |
| [13] |
Toga AW, Thompson PM, Mega MS, et al. Probabilistic approaches for atlasing normal and disease-specific brain variability. Anat Embryol (Berl). 2001;204(4):267–282. doi: 10.1007/s004290100198 |
| [14] |
Toga A.W., Thompson P.M., Mega M.S., et al. Probabilistic approaches for atlasing normal and disease-specific brain variability // Anat Embryol (Berl).2001. Vol. 204, N 4. P. 267–282. doi: 10.1007/s004290100198 |
| [15] |
Amunts K, Hawrylycz MJ, Van Essen DC, et al. Interoperable atlases of the human brain. Neuroimage. 2014;99:525–532. doi: 10.1016/j.neuroimage.2014.06.010 |
| [16] |
Amunts K., Hawrylycz M.J., Van Essen D.C., et al. Interoperable atlases of the human brain // Neuroimage. 2014. Vol. 99. P. 525–532. doi: 10.1016/j.neuroimage.2014.06.010 |
| [17] |
Proshchina A, Kharlamova A, Krivova Y, et al. Neuromorphological atlas of human prenatal brain development: white paper. Life (Basel). 2023;13(5):1182. doi: 10.3390/life13051182 |
| [18] |
Proshchina A., Kharlamova A., Krivova Y., et al. Neuromorphological atlas of human prenatal brain development: white paper // Life (Basel). 2023. Vol. 13, N 5. P. 1182. doi: 10.3390/life13051182 |
| [19] |
Amunts K, Mohlberg H, Bludau S, Zilles K. Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science. 2020;369(6506):988–992. doi: 10.1126/science.abb4588 |
| [20] |
Amunts K., Mohlberg H., Bludau S., Zilles K. Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture // Science. 2020. Vol. 369, N 6506. P. 988–992. doi: 10.1126/science.abb4588 |
| [21] |
Vogelstein JT, Perlman E, Falk B, et al. A community-developed open-source computational ecosystem for big neuro data. Nat Methods. 2018;15(11):846–847. doi: 10.1038/s41592-018-0181-1 |
| [22] |
Vogelstein J.T., Perlman E., Falk B., et al. A community-developed open-source computational ecosystem for big neuro data // Nat Methods. 2018. Vol. 15, N 11. P. 846–847. doi: 10.1038/s41592-018-0181-1 |
| [23] |
https://www.ehd.org/ [Internet]. The virtual human embryo [cited: 15.09.2023]. Available from: https://www.ehd.org/virtual-human-embryo/ |
| [24] |
https://www.ehd.org/ [интернет]. The virtual human embryo [дата обращения: 15.09.2023]. Доступ по ссылке: https://www.ehd.org/virtual-human-embryo/ |
| [25] |
Belle M, Godefroy D, Couly G, et al. Tridimensional visualization and analysis of early human development. Cell. 2017;169(1):161–173.e12. doi: 10.1016/j.cell.2017.03.008 |
| [26] |
Belle M., Godefroy D., Couly G., et al. Tridimensional visualization and analysis of early human development // Cell. 2017. Vol. 169, N 1. P. 161–173.e12. doi: 10.1016/j.cell.2017.03.008 |
| [27] |
Eze UC, Bhaduri A, Haeussler M, et al. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci. 2021;24(4):584–594. doi: 10.1038/s41593-020-00794-1 |
| [28] |
Eze U.C., Bhaduri A., Haeussler M., et al. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia // Nat Neurosci. 2021. Vol. 24, N 4. P. 584–594. doi: 10.1038/s41593-020-00794-1 |
| [29] |
Bayer SA, Altman J. The human brain during the third trimester. Boca Raton: CRC Press; 2003. doi: 10.1201/9780203494943 |
| [30] |
Bayer S.A., Altman J. The human brain during the third trimester. Boca Raton: CRC Press, 2003. doi: 10.1201/9780203494943 |
| [31] |
Bayer SA, Altman J. The Human brain during the second trimester. Boca Raton: CRC Press; 2005. doi: 10.1201/9780203507483 |
| [32] |
Bayer S.A., Altman J. The Human brain during the second trimester. Boca Raton: CRC Press, 2005. doi: 10.1201/9780203507483 |
| [33] |
Bayer SA, Altman J. The human brain during the late first trimester. Boca Raton: CRC Press; 2006. doi: 10.1201/9781420003277 |
| [34] |
Bayer S.A., Altman J. The human brain during the late first trimester. Boca Raton: CRC Press, 2006. doi: 10.1201/9781420003277 |
| [35] |
Bayer SA, Altman J. The human brain during the early first trimester. Boca Raton: CRC Press; 2007. doi: 10.1201/9781420003284 |
| [36] |
Bayer S.A., Altman J. The human brain during the early first trimester. Boca Raton: CRC Press, 2007. doi: 10.1201/9781420003284 |
Eco-Vector
/
| 〈 |
|
〉 |