Morphological features of basal laminas of enteral nervous system structures in chronic slow transit constipation
Evgenii I. Chumasov , Nicolay A. Maistrenko , Pavel N. Romashchenko , Vadim B. Samedov , Elena S. Petrova , Dmitry E. Korzhevskii
Morphology ›› 2022, Vol. 160 ›› Issue (4) : 225 -238.
Morphological features of basal laminas of enteral nervous system structures in chronic slow transit constipation
BACKGROUND: Studies on basal laminas in the tissues of the enteric nervous system are few and are carried out on experimental models in vivo and in vitro, performed on animals. The morphological features of the structure and localization of BL, their cellular sources of origin in various tissues of the gastrointestinal tract in normal and pathological conditions remain poorly studied.
AIM: Study of morphological features and distribution of basal laminas in human colon tissues and their changes in pathology.
MATERIALS AND METHODS: Fragments of the large intestine, obtained as a result of surgery for chronic slow-transit constipation, performed in S. M. Kirov Military Medical Academy were studied. The selective marker of basal laminas, type IV collagen, as well as neuronal and glial immunohistochemical markers (PGP 9.5, GFAP, S100â proteins) were used in the work
RESULTS: It has been shown that the greatest immunoreactivity within the intestinal wall is observed in the myenteric membrane, weak — in the vessels of the submucosa, locally expressed — in the subepithelial region of the mucous membrane (in the upper sections of the crypts). In smooth muscle, basal laminas were found around the smooth muscle cells of the longitudinal and concentric layers of the muscular membrane, mucous membrane, veins and arteries, as well as in the endothelium. It has been shown that the ganglionic Auerbach’s plexus is delimited from closely adjacent muscle layers of a continuous basal lamina, similar to the basal plate (glia limitans) of the brain and spinal cord of the CNS. It is clearly defined by its appearance — it has the form of a continuous hollow tubular structure. The sources of the formation of the basal plate around the ganglia of Auerbach and Meissner’s plexuses are various glial elements: in the first plexus, astrocyte-like and non-myelinated Schwann cells (both types located in the neuropil), and in the second plexus, glia of the autonomic nervous system (satellite cells of neurons and neurolemmocytes of postganglionic nerve fibers).
CONCLUSIONS: For the first time, the transition of basal lamina from the Auerbach’s plexus to numerous basal plates of neurolemmocytes of the Remakov fibers of the main terminal nerve plexus, which are involved in the innervation of the smooth muscle cells of the muscular membrane, is shown. Signs of dystrophic changes in the basal lamina structure associated with pathological changes in chronic slow transit constipation (tissue edema, inflammatory reactions, manifestations of agangliosis, gliosis, focal denervation of muscle cells, degeneration of nerve endings of neuromuscular and ganglionic plexuses) are shown in the work.
basal lamins / colon wall tissues / chronic slow transit constipation / collagen IV / immunohistochemical methods
| [1] |
Töpfer U. Basement membrane dynamics and mechanics in tissue morphogenesis. Biol Open. 2023;12(8): bio059980. doi: 10.1242/bio.059980 |
| [2] |
Töpfer U. Basement membrane dynamics and mechanics in tissue morphogenesis // Biol Open. 2023. Vol. 12, N 8. P. bio059980. doi: 10.1242/bio.059980 |
| [3] |
Nguyen B, Bix G, Yao Y. Basal lamina changes in neurodegenerative disorders. Mol Neurodegener. 2021;16(1):81. doi: 10.1186/s13024-021-00502-y |
| [4] |
Nguyen B., Bix G., Yao Y. Basal lamina changes in neurodegenerative disorders // Mol. Neurodegener. 2021. Vol. 16, N 1. P. 81. doi: 10.1186/s13024-021-00502-y |
| [5] |
Patton BL. Basal lamina and the organization of neuromuscular synapses. J Neurocytol. 2003;32(5-8):883–903. doi: 10.1023/B: NEUR.0000020630.74955.19 |
| [6] |
Patton B. L. Basal lamina and the organization of neuromuscular synapses // J Neurocytol. 2003. Vol. 32, N 5-8. P. 883–903. doi: 10.1023/B: NEUR.0000020630.74955.19 |
| [7] |
Nozdrachev AD, Chumasov EI. Perifericheskaya nervnaya sistema. Saint Petersburg: Nauka; 1999. (In Russ). |
| [8] |
Ноздрачёв А.Д., Чумасов Е. И. Периферическая нервная система. Санкт-Петербург : Наука, 1999. |
| [9] |
Bannerman PG, Mirsky R, Jessen KR, et al. Light microscopic immunolocalization of laminin, type IV collagen, nidogen, heparan sulphate proteoglycan and fibronectin in the enteric nervous system of rat and guinea pig. J Neurocytol. 1986;15(6):733–743. doi: 10.1007/BF01625191 |
| [10] |
Bannerman P.G., Mirsky R., Jessen K. R., et al. Light microscopic immunolocalization of laminin, type IV collagen, nidogen, heparan sulphate proteoglycan and fibronectin in the enteric nervous system of rat and guinea pig // J Neurocytol. 1986. Vol. 15, N 6. P. 733–743. doi: 10.1007/BF01625191 |
| [11] |
Banin V.V., Bykov V. L., editors. Terminologia histologica. Mezhdunarodnye terminy po citologii i gistologii cheloveka s oficial’nym spiskom russkih jekvivalentov. Moscow: GJeOTAR-Media; 2009. (In Russ). |
| [12] |
Terminologia histologica. Международные термины по цитологии и гистологии человека с официальным списком русских эквивалентов / под ред. В. В. Банина, В. Л. Быкова. Москва : ГЭОТАР-Медиа, 2009. |
| [13] |
Holland AM, Bon-Frauches AC, Keszthelyi D, et al. The enteric nervous system in gastrointestinal disease etiology. Cell Mol Life Sci. 2021;78(10):4713–4733. doi: 10.1007/s00018-021-03812-y |
| [14] |
Holland A.M., Bon-Frauches A.C., Keszthelyi D., et al. The enteric nervous system in gastrointestinal disease etiology // Cell Mol Life Sci. 2021. Vol. 78, N 10. P. 4713–4733. doi: 10.1007/s00018-021-03812-y |
| [15] |
Veríssimo CP, Carvalho JDS, da Silva FJM, et al. Laminin and environmental cues act in the inhibition of the neuronal differentiation of enteric glia in vitro. Front Neurosci. 2019;13:914. doi: 10.3389/fnins.2019.00914 |
| [16] |
Veríssimo C.P., Carvalho J. D.S., da Silva F. J.M., et al. Laminin and environmental cues act in the inhibition of the neuronal differentiation of enteric glia in vitro // Front Neurosci. 2019. Vol. 13. P. 914. doi: 10.3389/fnins.2019.00914 |
| [17] |
Gabella G. Enteric glia: extent, cohesion, axonal contacts, membrane separations and mitochondria in Auerbach’s ganglia of guinea pigs. Cell Tissue Res. 2022;389(3):409–426. doi: 10.1007/s00441-022-03656-3 |
| [18] |
Gabella G. Enteric glia: extent, cohesion, axonal contacts, membrane separations and mitochondria in Auerbach’s ganglia of guinea pigs // Cell Tissue Res. 2022. Vol. 389, N 3. P. 409–426. doi: 10.1007/s00441-022-03656-3 |
| [19] |
Grigorev IP, Korzhevskii DE. Current technologies for fixation of biological material for immunohistochemical analysis (review). Sovrem Tekhnologii Med. 2018;10(2):156–165. doi: 10.17691/stm2018.10.2.19 |
| [20] |
Grigorev I.P., Korzhevskii D. E. Current technologies for fixation of biological material for immunohistochemical analysis (review) // Sovrem Tekhnologii Med. 2018. Vol. 10, N 2. P. 156–165. doi: 10.17691/stm2018.10.2.19 |
| [21] |
Gabella G. Ultrastructure of the nerve plexuses of the mammalian intestine: the enteric glial cells. Neuroscience. 1981;6(3):425–436. doi: 10.1016/0306-4522(81)90135-4 |
| [22] |
Gabella G. Ultrastructure of the nerve plexuses of the mammalian intestine: the enteric glial cells // Neuroscience. 1981. Vol. 6, N 3. P. 425–436. doi: 10.1016/0306-4522(81)90135-4 |
| [23] |
Wedel T, Holschneider AM, Krammer HJ. Ultrastructural features of nerve fascicles and basal lamina abnormalities in hirschsprung’s disease. Eur J Pediatr Surg. 1999;139(2):75–82. doi: 10.1055/s-2008-1072217 |
| [24] |
Wedel T., Holschneider A. M., Krammer H. J. Ultrastructural features of nerve fascicles and basal lamina abnormalities in hirschsprung’s disease // Eur J Pediatr Surg. 1999. Vol. 139, N 2. P. 75–82. doi: 10.1055/s-2008-1072217 |
| [25] |
Hanani M, Ledder O, Yutkin V, et al. Regeneration of myenteric plexus in the mouse colon after experimental denervation with benzalkonium chloride. J Comp Neurol. 2003;462(3):315–327. doi: 10.1002/cne.10721 |
| [26] |
Hanani M., Ledder O., Yutkin V., et al. Regeneration of myenteric plexus in the mouse colon after experimental denervation with benzalkonium chloride // J Comp Neurol. 2003. Vol. 462, N 3. P. 315–327. doi: 10.1002/cne.10721 |
| [27] |
Gershon MD. Developmental determinants of the independence and complexity of the enteric nervous system. Trends Neurosci. 2010;33(10):446–456. doi: 10.1016/j.tins.2010.06.002 |
| [28] |
Gershon M. D. Developmental determinants of the independence and complexity of the enteric nervous system // Trends Neurosci. 2010. Vol. 33, N 10. P. 446–456. doi: 10.1016/j.tins.2010.06.002 |
| [29] |
Furness J, Stebbig M. The first brain: species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterol Motil. 2018;30(2). doi: 10.1111/nmo.13234 |
| [30] |
Furness J., Stebbig M. The first brain: species comparisons and evolutionary implications for the enteric and central nervous systems // Neurogastroenterol Motil. 2018. Vol. 30, N 2. doi: 10.1111/nmo.13234 |
| [31] |
Gershon MD. The enteric nervous system: a second brain. Hosp Pract (1995). 1999;34(7):31–42. doi: 10.3810/hp.1999.07.153 |
| [32] |
Gershon M. D. The enteric nervous system: a second brain // Hosp Pract (1995). 1999. Vol. 34, N 7. P. 31–42. doi: 10.3810/hp.1999.07.153 |
| [33] |
Verkhratsky A, Ho MS, Parpura V. Evolution of neuroglia. Adv Exp Med Biol. 2019;1175:15–44. doi: 10.1007/978-981-13-9913-8_2 |
| [34] |
Verkhratsky A., Ho M. S., Parpura V. Evolution of neuroglia. // Adv Exp Med Biol. 2019. Vol. 1175. P. 15–44. doi: 10.1007/978-981-13-9913-8_2 |
| [35] |
Boesmans W, Lasrado R, Vanden Berghe P, Pachnis V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system. Glia. 2015;63(2):229–241. doi: 10.1002/glia.22746 |
| [36] |
Boesmans W., Lasrado R., Vanden Berghe P., Pachnis V. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system // Glia. 2015. Vol. 63, N 2. P. 229–241. doi: 10.1002/glia.22746 |
| [37] |
Grundmann D, Loris E, Maas-Omlor S, et al. Enteric glia: S100, GFAP, and beyond. Anat Rec (Hoboken). 2019;302(8):1333–1344. doi: 10.1002/ar.24128 |
| [38] |
Grundmann D., Loris E., Maas-Omlor S., et al. Enteric glia: S100, GFAP, and beyond // Anat Rec (Hoboken). 2019. Vol. 302, N 8. P. 1333–1344. doi: 10.1002/ar.24128 |
| [39] |
Rosenberg HJ, Rao M. Enteric glia in homeostasis and disease: from fundamental biology to human pathology. iScience. 2021;24(8):102863. doi: 10.1016/j.isci.2021.102863 |
| [40] |
Rosenberg H.J., Rao M. Enteric glia in homeostasis and disease: from fundamental biology to human pathology // iScience. 2021. Vol. 24, N 8. P. 102863. doi: 10.1016/j.isci.2021.102863 |
| [41] |
Wedel T, Roblick U, Gleiss J, et al. Organization of the enteric nervous system in the human colon demonstrated by wholemount immunohistochemistry with special reference to the submucous plexus. Ann Anat. 1999;181(4):327–337. doi: 10.1016/S0940-9602(99)80122-8 |
| [42] |
Wedel T., Roblick U., Gleiss J., et al. Organization of the enteric nervous system in the human colon demonstrated by wholemount immunohistochemistry with special reference to the submucous plexus // Ann Anat. 1999. Vol. 181, N 4. P. 327–337. doi: 10.1016/S0940-9602(99)80122-8 |
| [43] |
Tennyson VM, Gershon MD, Sherman DL, et al. Structural abnormalities associated with congenital megacolon in transgenic mice that overexpress the Hoxa-4 gene. Dev Dyn. 1993;198(1):28–53. doi: 10.1002/aja.1001980105 |
| [44] |
Tennyson V.M., Gershon M. D., Sherman D. L., et al. Structural abnormalities associated with congenital megacolon in transgenic mice that overexpress the Hoxa-4 gene // Dev Dyn. 1993. Vol. 198, N 1. P. 28–53. doi: 10.1002/aja.1001980105 |
| [45] |
Wang YB, Ling J, Zhang WZ, et al. Effect of bisacodyl on rats with slow transit constipation. Braz J Med Biol Res. 2018;51(7) e7372. doi: 10.1590/1414-431x20187372 |
| [46] |
Wang Y.B., Ling J., Zhang W. Z., et al. Effect of bisacodyl on rats with slow transit constipation // Braz J Med Biol Res. 2018. Vol. 51, N 7. P. e7372. doi: 10.1590/1414-431x20187372 |
| [47] |
Chumasov EI, Majstrenko NA, Romashenko PN, et al. Immunohistochemical study of the sympathetic innervation of the colon in chronic slow-transit constipation. Experimental and Clinical Gastroenterology Journal. 2022;207(11):191–197. (In Russ). doi: 10.31146/1682-8658-ecg-207-11-191-197 |
| [48] |
Чумасов Е.И., Майстренко Н. А., Ромашенко П. Н., и др. Иммуногистохимическое исследование симпатической иннервации толстой кишки при хроническом медленно-транзитном запоре // Экспериментальная и клиническая гастроэнтерология. 2022. Т. 207, № 11. С. 191–197. doi: 10.31146/1682-8658-ecg-207-11-191-197 |
| [49] |
Souza NB, Liberti EA, De-Souza RR. Studies on the intrinsic nervous system of the wild rodent Calomys callosus digestive tract. II. The submucous plexus. Braz J Med Biol Res. 1998;31(5):647–654. doi: 10.1590/s0100-879x1998000500007 |
| [50] |
Souza N.B., Liberti E. A., De-Souza R. R. Studies on the intrinsic nervous system of the wild rodent Calomys callosus digestive tract. II. The submucous plexus // Braz J Med Biol Res. 1998. Vol. 31, N 5. P. 647–654. doi: 10.1590/s0100-879x1998000500007 |
Chumasov E.I., Maistrenko N.A., Romashchenko P.N., Samedov V.B., Petrova E.S., Korzhevskii D.E.
/
| 〈 |
|
〉 |