Syncytial cytoplasmic anastomoses between the neu-rites of caudal mesenteric ganglion cells in adult cats

L I ARCHAKOVA , O S SOTNIKOV , S A NOVAKOVSKAYA , I A SOLOVYOVA , T V KRASNOVA

Morphology ›› 2009, Vol. 135 ›› Issue (2) : 23 -26.

PDF
Morphology ›› 2009, Vol. 135 ›› Issue (2) : 23 -26. DOI: 10.17816/morph.402459
Articles
other

Syncytial cytoplasmic anastomoses between the neu-rites of caudal mesenteric ganglion cells in adult cats

Author information +
History +
PDF

Abstract

Since the majority of the published data on syncytial cytoplasmic anastomoses relate to the autonomic nervous system in the early postnatal period of development, when many nerve fibers are still poorly covered by glia or have no glial sheaths at all, it was suggested that such anastomoses were not present in adults due to the significant development of glia separating individual neurites from each other. To check this assumption, we have performed an electron microscopic study of the adult cat dorsal caudal mesenteric ganglion. The cell neurites were found to be frequently covered by glial sheaths. However, almost in every sample, the syncytial pores were detected between the contacting neurites lacking glial covering layers. Sometimes serial syncytially connected neurites were seen. Axo-dendritic synapses with presynaptic perforations outside the synaptic specializations were described in the autonomic nervous system for the first time. These observations therefore provide evidence of syncytial cytoplasm connections in normal adult animals, however this does not reject the neuronal doctrine.

Keywords

interneuronal anastomoses / axo-dendritic synapses / caudal mesenteric ganglion / autonomic nervous system

Cite this article

Download citation ▾
L I ARCHAKOVA, O S SOTNIKOV, S A NOVAKOVSKAYA, I A SOLOVYOVA, T V KRASNOVA. Syncytial cytoplasmic anastomoses between the neu-rites of caudal mesenteric ganglion cells in adult cats. Morphology, 2009, 135(2): 23-26 DOI:10.17816/morph.402459

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Боголепов Н.Н. Ультраструктура синапсов в норме и патологии. М., Медицина, 1975.

[2]

Боголепов Н.Н. Методы электронно-микроскопического исследования мозга. М., Медицина, 1976.

[3]

Боголепов Н.Н., Павловская Н.И. и Яковлева Н.И. Ультраструктура контактов парных нейронов в постгипоксическом периоде. Арх. анат., 1980, т. 79, вып. 9, с. 15-24.

[4]

Зеленин А.В., Кущ А.А. и Прудовский И.А. Реконструированная клетка. М., Наука, 1982.

[5]

Ларионова Н.П., Самосудова Н.В. и Чайлахян Л.М. Влияние L-глютамата на структуру зернистых клеток мозжечка лягушки in vitro. Докл. РАН, 1993, т. 333, № 2, с. 260-263.

[6]

Малашко В.В. и Сотников О.С. Ультраструктурный анализ постнатального развития энтеральной нервной системы поросят. Морфогенез и реактивная перестройка нервной системы. Труды Санкт-Петербургск. общ-ва естествоиспытат., 1996, т. 76, вып. 5, с. 30-40.

[7]

Парамонова Н.М. и Сотников О.С. Цитоплазматическая синцитиальная связь между телами нейронов ЦНС взрослых животных. Морфология, 2008, т. 134, вып. 6, с. 13-17.

[8]

Рингерц Н. и Сэвидж Р. Гибридные клетки. М., Мир, 1979.

[9]

Самосудова Н.В., Ларионова Н.П. и Чайлахян Л.М. Патологическое слияние зернистых клеток мозжечка лягушки под влиянием L-глутамата in vitro. Докл. РАН, 1994, т. 336, № 3, с. 406-409.

[10]

Семченко В.В., Боголепов Н.Н., Степанов С.С. и др. Синаптическая пластичность неокортекса белых крыс при диффузно-очаговых повреждениях головного мозга. Морфология, 2005, т. 128, вып. 4, с. 76-81.

[11]

Сотников О.С., Малашко В.В. и Рыбакова Г.И. Синцитиальная связь нейронов в культуре ткани в раннем онтогенезе. Морфология, 2007, т. 131, вып. 2, с. 7-15.

[12]

Ackman J.B., Siddiqi F., Walikonis R.S. and LoTurco J.J. Fusion of microglia with pyramidal neurons after retroviral infection. J. Neurosci., 2006, v. 26, № 44, p. 11413-11422.

[13]

Alvarez-Dolado M., Pardal R., Garcia-Verdugo J.M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardio-myocytes and hepatocytes. Nature, 2003, v. 425, № 6961, p. 968-973.

[14]

Bae J.S., Furuya S., Shinoda Y et al. Neurodegeneration agents the ability of bone marrow-derived mesenchymal stem cells to fuse with Purkinje neurons in Niemann-Pick type C mice. Hum. Gene Ther., 2005, v. 16, № 8, p. 1006-1011.

[15]

Bae J.S., Han H.S., Youn D.H. et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells, 2007, v. 25, № 5, p. 1307-1316.

[16]

Guillery R.W. Relating the neuron doctrine to the cell theory / Should contemporary knowledge change our view of the neuron doctrine? Brain Res. Rev. 2007, v. 55, № 2, p. 411-421.

[17]

Santander R.G., Cuadrado G.M. and Sáez M.R. Exceptions to Cajal's neuron theory: Communicating synapses. Acta anat., 1988, v. 132, p. 74-76

[18]

Weimann J.M., Charlton C.A., Brazelton T.R. et al. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl. Acad. Sci. USA, 2003, v. 100, № 4, p. 2088-2093.

[19]

Weimann J.M., Johansson C.B., Trejo A. and Blau H.M. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell. Biol., 2003, v. 5, № 11, p. 952-954.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/