FUSION OF BRAIN NEURONS IN RAT EMBRYOS

O S Sotnikov , L E Frumkina , S A Novakovskaya , N N Bogolepov , O S Sotnikov , L Ye Frumkina , S A Novakovskaya , N N Bogolepov

Morphology ›› 2011, Vol. 139 ›› Issue (2) : 18 -21.

PDF
Morphology ›› 2011, Vol. 139 ›› Issue (2) : 18 -21. DOI: 10.17816/morph.399475
Articles
other

FUSION OF BRAIN NEURONS IN RAT EMBRYOS

Author information +
History +
PDF

Abstract

Syncytial interneuronal connections were studied in the sensomotor cortex and caudate nucleus of twenty 14-22 day rat embryos. It was shown that with the extremely weak development of glial processes, many neuronal bodies and their processes were in the direct contact with each other. The contacting membranes in these areas formed oblong and dot-like contacts resembling gap and tight junctions. As a result, the intercellular cleft experienced varicose-like deformations. In the area of contacts, barely visible membrane pores were formed that broadened to form large perforations. The perforation margins presented the rounded shape of fused plasma membranes of adjacent neurons. Inside the perforations, residual vesicular membranous bodies were formed. The areas of the paired membranes between perforations were fragmented, thus increasing the number of residual vesicles, until the neurons fused with each other completely by unifying the neuroplasm of contacting cells. The results of these studies suggest that that the fusion of neurons in vertebrate brain cortex and brainstem nuclei could occur not only in pathology, but also in normal animals at the stage of embryonic development.

Keywords

neurons / membrane pores / syncytial connection / membrane contacts

Cite this article

Download citation ▾
O S Sotnikov, L E Frumkina, S A Novakovskaya, N N Bogolepov, O S Sotnikov, L Ye Frumkina, S A Novakovskaya, N N Bogolepov. FUSION OF BRAIN NEURONS IN RAT EMBRYOS. Morphology, 2011, 139(2): 18-21 DOI:10.17816/morph.399475

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Боголепов Н.Н., Павловская Н.И. и Яковлева Н.И. Ультраструктура контактов парных нейронов в постгипоксическом периоде. Арх. анат., 1980, т. 79, вып. 9, с. 15-24.

[2]

Боголепов Н.Н., Яковлева Н.И., Фрумкина Л.Е. и Королева С.К. Различные виды неспецифических межклеточных контактов в развивающемся мозге крысы. Арх. анат., 1986, т. 40, вып. 2, с. 45-53.

[3]

Иванова В.Ф. Многоядерные клетки (образование, строение, биологическое значение). Арх. анат., 1984, т. 87, вып. 12, с. 80 - 86

[4]

Пальцын А.А., Колокольчикова Е.Г., Константинова Н.Б. и др. Образование гетерокарионов как способ регенерации нейронов при постишемическом повреждении коры мозга у крыс. Бюл. экспер. биол., 2008, т. 146, № 10, с. 407-410.

[5]

Пальцын А.А., Константинова Н.Б., Романова Г.А. и др. Роль слияния клеток в физиологической и репаративной регенерации коры головного мозга. Бюл. экспер. биол., 2009, т. 148, № 11, с. 580-583.

[6]

Самосудова Н.В., Ларионова Н.П. и Чайлахян Л.М. Патологическое слияние зернистых клеток мозжечка лягушки под влиянием L-глутамата in vitro. Докл. РАН, 1994, т. 336, № 3, с. 406-409.

[7]

Семченко В.В.,Боголепов Н.Н.и Степанов С.С.Синаптическая пластичность неокортекста белых крыс при диффузноочаговых повреждениях головного мозга. Морфология, 2005, т. 128, вып. 4, с. 76-81.

[8]

Сотников О.С., Арчакова Л.И., Новаковская С.А. и Соловьева И.А. Проблема синцитиальной связи нейронов при патологии. Бюл. экспер. биол., 2009, т. 147, № 2, с. 207-210.

[9]

Сотников О.С., Новаковская С.А. и Соловьева И.А. Синцитиальные перфорации нейрональных мембран эмбриона человека. Онтогенез, 2011, т. 42, № 1, с. 42-52.

[10]

Узденский А.Б. Управляемый некроз. Биологические мембраны, 2010, т. 27, № 1, с. 7-17.

[11]

Ярыгин Н.Е. и Ярыгин В.Н. Патологические и приспособительные изменения нейрона. М., Медицина, 1973.

[12]

Ackman J.B., Siddigi F., Walikonis R.S. and LoTurco J.J. Fusion of microglia with pyramidal neurons after retroviral infection. J. Neurosci., 2006, v. 26, № 44, p. 11413-11422.

[13]

Aguzzi A., Wagner E.F., Netzer K.O. et al. Human foamy virus proteins accumulate in neurons and induce multinucleated giant cells in the brain of transgenic mice. Am. J. Pathol., 1993, v. 142, № 4, p. 1061-1071.

[14]

Alvarez-Dolado M., Pardal R., Garcia-Verdugo J.M. et al. Fusion of bone marrow - derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature, 2003, v. 425, № 6961, p. 968-973.

[15]

Archakova L.I., Sotnikov O.S., Novakovskaya S.A. et al. Syncytial cytoplasmic anastomoses between neurites in caudal mesenteric ganglion cells in adult cats. Neurosci. Behav. Physiol., 2010, v. 40, № 4, p. 447-450.

[16]

Bae J.S., Han H.S., Youn D.H. et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells, 2007, v. 25, № 5, p. 1307-1316.

[17]

Marotti J.D., Savitz S.L., Kim W.K. et al. Cerebral amyloid angiitis processing to generalized angiitis and leucoencephalitis. Neuropathol. Appl. Neurobiol., 2007, v. 33, № 4, p. 474-479.

[18]

Paramonova N.M. and Sotnikov O.S. Cytoplasmic syncytial connections between neuron bodies in the CNS of adult animals. Neurosci. Behav. Physiol., 2010, v. 40, № 1, p. 73-77.

[19]

Santander R.S., Cuadrado G.M. and Sáez M.R. Exceptions to Cajal's neuron theory: communicating synapses. Acta Anat., 1988, v. 132. p. 74-76.

[20]

Sotnikov O.S., Malashko V.V. and Rybakova G.I. Fusion of nerve fibers. Dokl. Biol. Sci., 2006, v. 410, p. 361-363.

[21]

Sotnikov O.S., Malashko V.V. and Rybakova G.I. Syncytial coupling of neurons in tissue culture and early ontogenesis. Neurosci. Behav. Physiol., 2008, v. 38, № 4, p. 323-331.

[22]

Sotnikov O.S., Paramonova N.M. and Archakova L.I. Ultrastructural analysis of interneuronal syncytial perforations. Cell Biol. Int., 2009, v. 34, № 4, p. 361-364.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/