SPREADING OF TISSUE SPHEROIDS FROM PRIMARY HUMAN FIBROBLASTS ON THE SURFACE OF MICROFIBROUS ELECTROSPUN POLYURETHANE MATRIX (A scanning electron microscopic study)

Ye. V. Kudan , F. D. A. S. Pereira , V. A Parfenov , V. A Kasyanov , Yu. D. Khesuani , Ye. A. Bulanova , A. Aleksandrovich Mironov

Morphology ›› 2015, Vol. 148 ›› Issue (6) : 70 -74.

PDF
Morphology ›› 2015, Vol. 148 ›› Issue (6) : 70 -74. DOI: 10.17816/morph.398936
Articles
research-article

SPREADING OF TISSUE SPHEROIDS FROM PRIMARY HUMAN FIBROBLASTS ON THE SURFACE OF MICROFIBROUS ELECTROSPUN POLYURETHANE MATRIX (A scanning electron microscopic study)

Author information +
History +
PDF

Abstract

Tissue spheroids biofabricated from primary human fibroblasts using non-adhesive agarose forms, were placed by 3D bioprinter on the surface of microfibrous electrospun matrix. It was demonstrated that tissue spheroids attached to the surface of matrix during several hours and then gradually spread for several days which indicates high level of biocompatibiity of electrospun microfibrous polyurethane matrix. During this activity, human fibroblasts used processes of leading cell borders for initial step of attachment to matrix filaments. Tissue constructions formed during spreading of tissue spheroids on the surface of electrospun microfibrous polyurethane matrix seem to be a perspective technology platform for development of new methods of biofabrication and 3D bioprinting.

Keywords

tissue spheroids / extracellular matrix / spreading / biocompatibiity

Cite this article

Download citation ▾
Ye. V. Kudan, F. D. A. S. Pereira, V. A Parfenov, V. A Kasyanov, Yu. D. Khesuani, Ye. A. Bulanova, A. Aleksandrovich Mironov. SPREADING OF TISSUE SPHEROIDS FROM PRIMARY HUMAN FIBROBLASTS ON THE SURFACE OF MICROFIBROUS ELECTROSPUN POLYURETHANE MATRIX (A scanning electron microscopic study). Morphology, 2015, 148(6): 70-74 DOI:10.17816/morph.398936

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beachley V., Kasyanov V., Nagy-Mehesz A. et al. The fusion of tissue spheroids attached to pre-stretched electrospun polyurethane scaffolds // J. Tissue Eng. 2014. Vol. 5. P. 8-15.

[2]

Chua K. N., Lim W. S., Zhang P. et al. Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold // Biomaterials. 2005. Vol. 26. P. 2537-2547.

[3]

Foty R. A., Pfleger C. M., Forgacs G., Steinberg M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior // Development. 1996. Vol. 122. P. 1611-1620.

[4]

Huang G. S., Tseng C. S., Linju Y. B. et al. Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration // Eur. Cell Mater. 2013. Vol. 26. P. 179-194.

[5]

Jakab K., Neagu A., Mironov V. et al. Engineering biological struc tures of prescribed shape using self-assembling multicellular systems // Proc. Natl. Acad. Sci. USA. 2004. Vol. 101. P. 2864- 2869.

[6]

Lee H. J., Lee S. J., Uthaman S. et al. Biomedical applications of magnetically functionalized organic/inorganic hybrid nanofibers // Int. J. Mol. Sci. 2015. Vol. 16. P. 13661-13677.

[7]

Mironov V., Kasyanov V., Markwald R. R. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication // Trends Biotechnol. 2008. Vol. 26. P. 338- 344.

[8]

Mironov V., Visconti R. P., Kasyanov V. et al. Organ printing: tissue spheroids as building blocks // Biomaterials. 2009. Vol. 30. P. 2164-2174.

[9]

Nakayama K. In Vitro Biofabrication of Tissues and Organs. In Biofabrication: Micro- and Nanofabrication Printing Patterning and Assemblies. Amsterdam: Elsevier, 2013.

[10]

Pérez-Pomares J. M., Foty R. A. Tissue fusion and cell sorting in embryonic development and disease: biomedical implications // Bioessays. 2006. Vol. 28. P. 809-821.

[11]

Pham Q. P., Sharma U., Mikos A. G. Electrospinning of polymeric nanofibers for tissue engineering applications: a review // Tissue Eng. 2006. Vol. 12. P. 1197-1211.

[12]

Ryan P.L., Foty R. A., Kohn J., Steinberg M. S. Tissue spreading on implantable substrates is a competitive outcome of cell-cell vs. cell-substratum adhesivity // Proc. Natl. Acad. Sci. USA. 2001. Vol. 98. P. 4323-4327.

[13]

Schon B. S., Schrobback K., van der Ven M. et al. Validation of a high-throughput microtissue fabrication process for 3D assembly of tissue engineered cartilage constructs // Cell Tis. Res. 2012. Vol. 3. P. 245-249.

[14]

Whatley B. R., Li X., Zhang N., Wen X. Magnetic-directed pat ter ning of cell spheroids // J. Biomed. Mater. Res. A. 2014. Vol. 102. P. 1537-1547.

[15]

Xia L., Sakban R. B., Qu Y. et al. Tethered spheroids as an in vitro hepatocyte model for drug safety screening // Biomaterials. 2012. Vol. 33. P. 2165-2176.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/