STRUCTURAL CHARACTERISTICS AND SPATIAL ORGANIZATION OF THE PARVALBUMIN-CONTAINING NEURONS OF THE SOMATOSENSORY AREA OF THE SI CEREBRAL CORTEX IN RATS

A. G. Sukhov , Ye. Yu. Kirichenko , L. A. Belichenko

Morphology ›› 2015, Vol. 148 ›› Issue (6) : 18 -22.

PDF
Morphology ›› 2015, Vol. 148 ›› Issue (6) : 18 -22. DOI: 10.17816/morph.398902
Articles
research-article

STRUCTURAL CHARACTERISTICS AND SPATIAL ORGANIZATION OF THE PARVALBUMIN-CONTAINING NEURONS OF THE SOMATOSENSORY AREA OF THE SI CEREBRAL CORTEX IN RATS

Author information +
History +
PDF

Abstract

The aim of the study was laminar morphometric study of immuno-labeled parvalbumin containing (PA+) neurons of cortical somatosensory area SI in outbred albino rats (n=10). The study of frontal and tangential sections 60 μm and 4 μm thick demonstrated a considerable diversity in cell body shape and size as well as in branching of the processes in PA+neurons in all the layers of the cortex. The greatest number of PA+neurons (47.1%) was found in layer IV of the cortex, in the zone of barrel formation. The study of tangential sections has shown that the largest number of PA+neurons was localized in the barrel septa (43%). In layer IV, their greatest density was detected in the walls of the barrel, making it possible to clearly identify their outlines. Quantitative predominance of PA+neurons in the septa may be associated with the direction of their dendrite course into the inner part of the barrel and the formation of dendro-dendritic gap junctions that, in turn, could be a morphological basis of individual local pacemaker rhythmogenesis and regulation of the functional state of the cortical columns

Keywords

cerebral cortex / barrels / neurons / parvalbumin / immunohistochemistry

Cite this article

Download citation ▾
A. G. Sukhov, Ye. Yu. Kirichenko, L. A. Belichenko. STRUCTURAL CHARACTERISTICS AND SPATIAL ORGANIZATION OF THE PARVALBUMIN-CONTAINING NEURONS OF THE SOMATOSENSORY AREA OF THE SI CEREBRAL CORTEX IN RATS. Morphology, 2015, 148(6): 18-22 DOI:10.17816/morph.398902

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Кириченко Е. Ю., Сухов А. Г., Логвинов А. К., Повилайтите П. Е. Анализ пространственного расположения щелевых контактов относительно химических синапсов на серийных ультратонких срезах баррельной коры крыс // Морфология. 2012. Т. 141, вып. 2. С. 13-17.

[2]

Cuzon Carlson V. C., Yeh H. H. GABAA receptor subunit profiles of tangentially migrating neurons derived from the medial ganglionic eminence // Cereb. Cortex. 2011. Vol. 21, № 8. С. 1792-1802.

[3]

Bezaire M. S., Soltesz I. Quzntitative assessment of CAI local cir cuits: Knowledge base for interneuron-pyramidal cell connectivity // Hippocampus. 2013. № 23. P. 751-785.

[4]

DeFelipe J., Lopez-Cruz P. L., Benavides-Piccione R. et al. New insights into classification and nomenclature of cortical GABAergic interneurons // Nat. Rev. Neurosci. 2013. Vol. 14, № 3. P. 202-216.

[5]

Druga R. Neocortical inhibitory system // Folia Biol. 2009. Vol. 55. P. 201-247.

[6]

Fish K. M., Hoffman G. D., Sheirh W. et al. Parvalbumincontaining chandelier and basket cell boutons have distinctive modes of maturation in monkey prefrontal cortex // J. Neurosci. 2013. Vol. 33, № 19. P. 8352-8358.

[7]

Fukuda T., Kosaka T. Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat // Neuroscience. 2003. Vol. 120, № 1. P. 5-20.

[8]

Fukuda T., Kosaka T., Singer W., Galuske R. A. Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network // J. Neurosci. 2006. Vol. 26, № 13. P. 3434-3443.

[9]

Golding N. L., Spruston N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons // Neuron. 1998. Vol. 21. P. 1189-1200.

[10]

Inan M., Blázquez-Llorca L., Merchán-Pérez A. et al. Dense and overlapping innervation of pyramidal neurons by chandelier cells // J. Neurosci. 2013. Vol. 33, № 5. P. 1907-1914.

[11]

Martina M., Vida I., Jonas P. Distal initiation and active propagation of action potentials in interneuron dendrites // Science. 2000. Vol. 287. P. 295-300.

[12]

Stuart G. J., Sakmann B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites // Nature. 1994. Vol. 367. P. 69-72.

[13]

Suzuki N., Bekkers J. M. Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers // J. Comp. Neurol. 2010. Vol. 518, № 10. P. 1670-1687

[14]

Vervaeke K., Lorincz A., Nusser Z., Silver R. A. Gap junctions compensate for sublinear dendritic integration in an inhibitory network // Science. 2012. Vol. 335. P. 1624-1628.

[15]

Wonders C. P., Taylor L., Welagen J. et al. A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence // Dev. Biol. 2008. Vol. 314, № 1. P. 127-136.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/