REMODELING OF THE ARTICULAR CARTILAGE DURING THE REPLACEMENT OF ITS DEFECT BY A BIOCOMPOSITE MATERIAL

V. B. Bogatov , P. V. Zeinalov , G. P. Liubun’ , M. N. Kozadayev , O. V. Matveyeva , Yu. Ye. Sal`kovskiy , A. M. Radzhabov , D. M. Puchinyian

Morphology ›› 2015, Vol. 147 ›› Issue (1) : 63 -69.

PDF
Morphology ›› 2015, Vol. 147 ›› Issue (1) : 63 -69. DOI: 10.17816/morph.398832
Articles
research-article

REMODELING OF THE ARTICULAR CARTILAGE DURING THE REPLACEMENT OF ITS DEFECT BY A BIOCOMPOSITE MATERIAL

Author information +
History +
PDF

Abstract

The regenerative capacity of articular cartilage was studied in animals in which its defects were replaced by biocomposite materials based on polycaprolactone in combination with hydroxyapatite. Six specimens of the material were used, which consisted of different proportions of these polymers. In the experiment on sheep (n=6) it was found that these biocomposite materials were replaced by hyaline-like cartilage during healing of artificially created defects in the articular cartilage of the knee joint, while the ratio of composite components had no effect on the quality of the regenerates formed. These results support the view of a possible application of biocomposite materials in the treatment of degenerative and traumatic lesions of hyaline cartilage.

Keywords

articular cartilage / defect / tissue reactions / polycaprolacton / hydroxyapatite

Cite this article

Download citation ▾
V. B. Bogatov, P. V. Zeinalov, G. P. Liubun’, M. N. Kozadayev, O. V. Matveyeva, Yu. Ye. Sal`kovskiy, A. M. Radzhabov, D. M. Puchinyian. REMODELING OF THE ARTICULAR CARTILAGE DURING THE REPLACEMENT OF ITS DEFECT BY A BIOCOMPOSITE MATERIAL. Morphology, 2015, 147(1): 63-69 DOI:10.17816/morph.398832

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahern B. J., Parvizi J., Boston R., Schaer T. P. Preclinical animal models in single site cartilage defect testing: a systematic review // Osteoarthritis Cartilage. 2009. Vol. 17. P. 705-713.

[2]

Ball S. T., Goomer R. S., Ostrander R. V. et al. Preincubation of tissue engineered constructs enhances donor cell retention // Clin. Orthop. 2004. Vol. 420. P. 276-285.

[3]

Bentley G., Minas T. Treating joint damage in young people // Brit. Med. J. 2000. Vol. 320. P. 1585-1588.

[4]

Breinan H. A., Minas T., Barone L. et al. Histological evaluation of the course of healing of canine articular cartilage defects treated with cultured autologous chondrocytes // Tissue Engl. 1998, Vol. 4, P. 101-114.

[5]

Brittberg M., Tallheden T., Sjorgren-Jansson E. et al. Autologous chondrocytes used for articular cartilagte repair // Clin. Orthop. 2001. Vol. 391 (Suppl.). P. 337-348.

[6]

Chiari C., Koller U., Dorotka R. et al. A tissue engineering approach to meniscus regeneration in a sheep model // Osteoarthritis Cartilage. 2006. Vol. 14. P. 1056-1065.

[7]

Chu C. R., Szczodry M., Bruno S. Animal models for cartilage regeneration and repair // Tissue Engl. Part B Rev. 2010. Vol. 16. P. 105-115.

[8]

Dhollander A. A., Liekens K., Almqvist K. F. et al. A pilot study of the use of an osteochondral scaffold plug for cartilage repair in the knee and how to deal with early clinical failures // Arthroscopy. 2012. Vol. 28. P. 225-233.

[9]

Feeley B. T., Gallo R. A., Shermsan S., Williams R. J. Management of osteoarthritis of the knee in the active patient // J. Am. Acad. Orthop. Surg. 2010. Vol. 18. P. 406-416.

[10]

Kandel R. A., Grynpas M., Pilliar R. et al. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model // Biomaterials. 2006. Vol. 27. P. 4120-4131.

[11]

Kitahara S., Nakagawa K., Sah R. L. et al. In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite // Tissue Engl. Part A. 2008. Vol. 14 (11). P. 1905-1913.

[12]

Laverty S., Girard C. A., Williams J. M. et al. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the rabbit // Osteoarthritis Cartilage. 2010. Vol. 18. P. 53-65.

[13]

Lories R. J., Luyten F. P. The bone-cartilage unit in osteoarthritis // Nat. Rev. Rheumatol. 2011. Vol. 7. P. 43-49.

[14]

Madry H., Orth P., Cucchiarini M. Gene therapy for cartilage repair // Cartilage. 2011. Vol. 2. P. 201-225.

[15]

Nejadnik H., Hui J. H., Feng Choong E. P. et al. Autologus bone marrow-derived mesenchymal stem cells versus autologus chond rocyte implantation: an observation cohort study // Am. J. Sports Med. 2010. Vol. 38. P. 1110-1116.

[16]

Niederauer G. G., Slivka M. A., Leatherbury N. C. et al. Evaluation of multiphase implants for repair of focal osteochondral defects in goats // Biomaterials. 2000. Vol. 21. P. 2561-2574.

[17]

Obradovic B., Martin I., Padera R. F. et al. Integration of engineered cartilage // J. Orthop. Res. 2001. Vol. 19. P. 1089- 1097.

[18]

O’Driscoll S. W., Marx R. G., Beaton D. E. et al. Validation of a simple histological, histochemical cartilage scoring system // Tissue Engl. 2001. Vol. 7. P. 313-320.

[19]

Pineda S., Pollack A., Stevenson S. et al. A semiquantative scale for histologic grading of articular cartilage repair // Acta Anat. 1992. Vol. 143. P. 335-340.

[20]

Potter K., Butler J. J., Horton W. E., Spencer R. G. S. Response of engineered cartilage tissue to biochemical agents as studied by proton magnetic resonance microscopy // Arthritis Rheum. 2000. Vol. 43. P. 1580-1590.

[21]

Shrout P. E., Fleiss J. L. Intraclass correlations: uses in assessing rater reliability // Psychol. Bull. 1979. Vol. 86. P. 420-428.

[22]

Zhu J. Bioactive modification of poly (ethyleneglycol) hydrogels for tissue engineering // Biomaterials. 2010. Vol. 31. P. 4639- 4656.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/