AGE-RELATED CHANGES OF SENSORY NO SYNTHASE-CONTAINING NEURONS AFTER CHEMICAL DEAFFERENTATION BY CAPSAICIN

K. Yu. Moiseyev , V. V. Porseva , V. P. Smirnova , M. B. Korzina , P. M. Masliukov

Morphology ›› 2014, Vol. 146 ›› Issue (6) : 37 -41.

PDF
Morphology ›› 2014, Vol. 146 ›› Issue (6) : 37 -41. DOI: 10.17816/morph.398820
Articles
research-article

AGE-RELATED CHANGES OF SENSORY NO SYNTHASE-CONTAINING NEURONS AFTER CHEMICAL DEAFFERENTATION BY CAPSAICIN

Author information +
History +
PDF

Abstract

In male Wistar rats (n=25) aged 3, 10, 20, 30 and 60 days, subjected to chemical deafferentation by a single injection of capsaicin at postnatal Day 2, localization, relative content and morphometric characteristics of neurons expressing NO synthase (NOS) were studied in caudal ganglion of vagus nerve (CGVN) and sensory ganglia of spinal nerves (SGSN) using immunohistochemical and morphometric methods. The control group consisted of rats (n=25) of the appropriate age. The results suggest that in the control group the proportion of NOS-immunopositive neurons in SGSN increased during the first 10 days of life and decreased between Day 30 and Day 60. In CGVN, the proportion of NOS-immunopositive neurons did not change significantly during the ontogenesis. In animals of the experimental group, the proportion of NOS-positive neurons decreased rapidly during the first 20 days of life. More pronounced decrease in the number of NOS-containing neurons was observed in SGSN as compared to that one in CGVN. The data obtained indicate deleterious effects of capsaicin on NOS-positive neurons, which confirms the role of NO in the mechanisms of nociception.

Keywords

sensory ganglia / nitric oxide / ontogenesis / immunohistochemistry

Cite this article

Download citation ▾
K. Yu. Moiseyev, V. V. Porseva, V. P. Smirnova, M. B. Korzina, P. M. Masliukov. AGE-RELATED CHANGES OF SENSORY NO SYNTHASE-CONTAINING NEURONS AFTER CHEMICAL DEAFFERENTATION BY CAPSAICIN. Morphology, 2014, 146(6): 37-41 DOI:10.17816/morph.398820

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Автандилов Г. Г. Медицинская морфометрия. М., Медицина, 1990.

[2]

Маслюков П. М., Порсева В. В., Корзина М. Б. и Ноздрачев А. Д. Нейрохимические особенности сенсорных нейронов в онтогенезе. Росс. физиол. журн. им. И. М. Сеченова, 2013, т. 99, № 7, с. 777-792.

[3]

Порсева В. В., Шилкин В. В., Корзина М. Б. и др. Изменение TRPV1-иммунореактивных нейронов чувствительных узлов спинномозговых нервов крысы под влиянием капсаицина. Морфология, 2011, т. 139, вып. 3, с. 41-45.

[4]

Порсева В. В., Стрелков А. А., Шилкин В. В. и Маслюков П. М. Возрастные изменения чувствительных нейронов, содержащих кальцитонин ген родственный пептид в условиях дефицита афферентации у крысы. Онтогенез, 2012, т. 43, № 6, с. 405-412.

[5]

Рагинов И. С. и Челышев Ю. А. Посттравматическое выживание чувствительных нейронов различных субпопуляций. Морфология, 2003, т. 124, № 4, с. 47-50.

[6]

Gallaher Z. R., Larios R. M., Ryu V. et al. Recovery of viscerosensory innervation from the dorsal root ganglia of the adult rat following capsaicin-induced injury. J. Comp. Neurol., 2010, v. 518, № 17, p. 3529-3540.

[7]

Kallenborn-Gerhardt W., Schröder K., Geisslinger G. and Schmidtko A. NOXious signaling in pain processing. Pharmacol Ther. 2013, v. 137, p. 309-317.

[8]

Ma Q. P. Expression of capsaicin receptor (VR1) by myelinated primary afferent neurons in rats. J. Neurosci. Lett., 2002, v. 319, p. 87-90.

[9]

Masliukov P. M., Emanuilov A. I., Madalieva L. V. et al. Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia. Neuroscience, 2014, v. 256, p. 271-281.

[10]

Pecze L.1., Blum W. and Schwaller B. Mechanism of capsaicin receptor TRPV1-mediated toxicity in pain-sensing neurons focusing on the effects of Na(+)/Ca(2+) fluxes and the Ca(2+)-binding protein calretinin. Biochim Biophys Acta, 2013, v. 1833, № 7, p. 1680-1691.

[11]

Petho G. and Reeh P. W. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol. Rev., 2012, v. 92, p. 1699-1775.

[12]

Yoshida T., Inoue R., Morii T. et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat. Chem. Biol., 2006, v. 2, p. 596-607.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/