MORPHOLOGICAL TISSUE CHANGES AFTER THE IMPLANTATION OF A BIODEGRADABLE MATERIAL ON COLLAGEN BASIS

I. V. Maiborodin , Ye. A. Beregovoy , A. I. Shevela , I. V. Kuznetsova , M. I. Barannik , A. A. Manayev , V. I. Maiborodina

Morphology ›› 2013, Vol. 144 ›› Issue (6) : 063 -068.

PDF
Morphology ›› 2013, Vol. 144 ›› Issue (6) : 063 -068. DOI: 10.17816/morph.398703
Articles
research-article

MORPHOLOGICAL TISSUE CHANGES AFTER THE IMPLANTATION OF A BIODEGRADABLE MATERIAL ON COLLAGEN BASIS

Author information +
History +
PDF

Abstract

The objective of this study was to examine the peculiarities of tissue reactions during the degradation of “Collost” bioplastic material on the collagen basis with completely preserved fibrous structure, after its implantation into the bone tissue defect. The defect in bone tissue sized 1–2 mm × 3–5 mm was created in tibial condyle. The study was performed on 24 Wistar rats using light microscopic methods. The tissue reactions were studied at different time intervals (1, 2, 6 and 12 months) after the implantation of collagenic material. It was found that after the implantation, the material became impregnated with blood, and due to fibrin, densely adhered to the damaged tissues. Further, the cells were found to migrate along the blood clot into its depth from the surrounding tissues. These were primarily the fibroblasts which were located in a network of fibers and started to absorb collagen from a surrounding material and to synthesize new collagen. Gradually, the collagenic material became similar to a cell-containing network. The volume of the newly synthesized collagen increased, and after some time all the foreign material was absorbed by fibroblasts and replaced with connective tissue. After 1 year, a large “Collost” fragment was completely degraded and replaced by loose connective tissue. The implantation of a collagenic material did not stimulate the formation of a delimiting connective tissue capsule

Keywords

collagenic material / implantation / degradation / connective tissue formation

Cite this article

Download citation ▾
I. V. Maiborodin, Ye. A. Beregovoy, A. I. Shevela, I. V. Kuznetsova, M. I. Barannik, A. A. Manayev, V. I. Maiborodina. MORPHOLOGICAL TISSUE CHANGES AFTER THE IMPLANTATION OF A BIODEGRADABLE MATERIAL ON COLLAGEN BASIS. Morphology, 2013, 144(6): 063-068 DOI:10.17816/morph.398703

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Возможности применения Коллоста — революционного биопластического материала нового поколения. Здоров’я Украiни, 2008, № 22, с. 50–51.

[2]

Майбородин И. В., Колесников И. С., Шеплев Б. В. и Рагимова Т. М. Применение фибрина и его препаратов в стоматологии. Стоматология, 2008, т. 87, № 6, с. 75–77.

[3]

Майбородин И. В., Колесников И. С., Шеплев Б. В. и др. Морфология подлежащих тканей десны после дентальной имплантации с применением препаратов фибрина. Стоматология, 2009, т. 88, № 1, с. 9–13.

[4]

Нестеренко В. Г., Сафоян А. А., Нестеренко С. В. и др. «Коллост» — имплантат для замещения дефектов мягких тканей. В кн.: Актуальные вопросы тканевой и клеточной трансплантологии. СПб., Изд-во «Человек и его здоровье», 2010, с. 237–238.

[5]

Сирак С. В., Слетов А. А., Алимов А. Ш. и др. Клинико-экспериментальное обоснование применения препарата Коллост и биорезорбируемых мембран Диплен-Гам и Пародонкол при удалении ретенированных и дистопированных нижних третьих моляров. Стоматология, 2008, т. 87, № 2, с. 10–14.

[6]

Сулимов А. Ф. и Кузнецова А. Б. Первичная костная пластика нижней челюсти аутогенным трансплантатом с применением коллагеновой мембраны «Коллост». Хирургия, 2012, № 6, с. 62–64.

[7]

Amerongen van M. J., Harmsen M. C., Petersen A. H. et al. The enzymatic degradation of scaffolds and their replacement by vascularized extracellular matrix in the murine myocardium. Biomaterials, 2006, v. 27, № 10, p. 2247–2257.

[8]

Anitua E., Sanchez M., Nurden A. T. et al. New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol., 2006, v. 24, № 5, p. 227–234.

[9]

Anitua E., Sanchez M., Nurden A. T. et al. Autologous fibrin matrices: a potential source of biological mediators that modulate ten don cell activities. J. Biomed. Mater. Res. A, 2006, v. 77, № 2, p. 285–293.

[10]

Choukroun J., Diss A., Simonpieri A. et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part V: histologic evaluations of PRF effects on bone allograft maturation in sinus lift. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, v. 101, № 3, p. 299–303.

[11]

Dohan D. M., Choukroun J., Diss A. et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, v. 101, № 3, p. e51–e55.

[12]

Dunn M. G., Avasarala P. N. and Zawadsky J. P. Optimization of extruded collagen fibers for ACL reconstruction. J. Biomed. Mater. Res., 1993, v. 27, № 12, p. 1545–1552.

[13]

Fredriksson M. I., Gustafsson A. K., Bergstrom K. G. and Asman B. E. Constitutionally hyperreactive neutrophils in periodontitis. J. Periodontol., 2003, v. 74, № 2, p. 219–224.

[14]

Kaijzel E. L., Koolwijk P., Erck van M. G. et al. Molecular weight fibrinogen variants determine angiogenesis rate in a fibrin matrix in vitro and in vivo. J. Thromb. Haemost., 2006, v. 4, № 9, p. 1975–1981.

[15]

Kanzler M. H. Basic mechanisms in the healing cutaneous wound. J. Dermatol. Surg. Oncol., 1986, v. 12, № 11, p. 1156–1164.

[16]

Kellouche S., Mourah S., Bonnefoy A. et al. Platelets, thrombospondin-1 and human dermal fibroblasts cooperate for stimulation of endothelial cell tubulogenesis through VEGF and PAI-1 regulation. Exp. Cell Res., 2007, v. 313, № 3, p. 486–499.

[17]

Maiborodin I., Shevela A., Perrin T. et al. Experimental results of the fibrin clot use to accelerate the regeneration of damaged bone in the rat lower jaw. Surg. Sci., 2010, v. 1, № 1, p. 1–6.

[18]

Soffer E., Ouhayoun J. P. and Anagnostou F. Fibrin sealants and platelet preparations in bone and periodontal healing. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2003, v. 95, № 5, p. 521–528.

[19]

Wachem van P. B., Luyn van M. J., Olde Damink L. H. et al. Tissue regenerating capacity of carbodiimide-crosslinked dermal sheep collagen during repair of the abdominal wall. Int. J. Artif. Organs, 1994, v. 17, № 4, p. 230–239.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/