PECULIARITIES OF ANGIOGENESIS AFTER THE IMPLANTATION OF POLYHYDROXYALKANOATE FILMS WITH THE ADSORBED MULTIPOTENT STROMAL STEM CELLS OF A BONE MARROW ORIGIN

I. V. Maiborodin , A. I. Shevela , V. V. Morozov , Ya. V. Novikova , V. A. Matveyeva , M. N. Drovosekov , M. I. Barannik , S. V. Marchukov , I. V. Kuznetsova

Morphology ›› 2013, Vol. 143 ›› Issue (1) : 041 -047.

PDF
Morphology ›› 2013, Vol. 143 ›› Issue (1) : 041 -047. DOI: 10.17816/morph.398618
Articles
research-article

PECULIARITIES OF ANGIOGENESIS AFTER THE IMPLANTATION OF POLYHYDROXYALKANOATE FILMS WITH THE ADSORBED MULTIPOTENT STROMAL STEM CELLS OF A BONE MARROW ORIGIN

Author information +
History +
PDF

Abstract

The processes developing in various rat tissues after implantation of polymeric polyhydroxyalkanoate (PHA) film fragments with adsorbed autologous multipotent stromal (mesenchymal) cells of bone marrow origin (AMMSCBM), were studied by methods of light microscopy. After the implantation of PHA film with AMMSCBM, the number of blood vessels in the surrounding tissues was found to increase as a result of neoangiogenesis. In this case, AMMSCBM did not migrate and were not destroyed at the place of injection, but differentiated into the cells forming blood vessel structures. The processes of angiogenesis in the tissues around PHA implant, in turn, lead to development of a larger number of blood vessels in the granulations formed around the implanted foreign body, higher volume of granulations proper and subsequent development of a thicker capsule delimiting polymer implant.

Keywords

multipotent stromal (mesenchymal) cells / polyhydroxyalkanoate / implantation / angiogenesis / granulomatous inflammation

Cite this article

Download citation ▾
I. V. Maiborodin, A. I. Shevela, V. V. Morozov, Ya. V. Novikova, V. A. Matveyeva, M. N. Drovosekov, M. I. Barannik, S. V. Marchukov, I. V. Kuznetsova. PECULIARITIES OF ANGIOGENESIS AFTER THE IMPLANTATION OF POLYHYDROXYALKANOATE FILMS WITH THE ADSORBED MULTIPOTENT STROMAL STEM CELLS OF A BONE MARROW ORIGIN. Morphology, 2013, 143(1): 041-047 DOI:10.17816/morph.398618

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Майбородин И. В., Шевела А. И., Анищенко В. В. и др. Особенности реакции тканей крыс на внутрибрюшинные имплантаты из биодеградируемого полигидроксиалканоата. Морфология, 2011, т. 139, вып. 2, с. 62–66.

[2]

Майбородин И. В., Якимова Н. В., Матвеева В. А. и др. Ангиогенез в рубце матки крыс после введения аутологичных мезенхимальных стволовых клеток костномозгового происхождения. Бюл. экспер. биол., 2010, т. 150, № 12, с. 705–711.

[3]

Майбородин И. В., Якимова Н. В., Матвеева В. А. и др. Морфологический анализ результатов введения аутологичных стволовых стромальных клеток костномозгового происхождения в рубец матки крыс. Морфология, 2010, т. 138, вып. 6, с. 47–55.

[4]

Шишацкая Е. И., Войнова О. Н., Горева А. В. и др. Реакция тканей на имплантацию микрочастиц из резорбируемых полимеров при внутримышечном введении. Бюл. экспер. биол., 2007, т. 144, № 12, с. 635–639.

[5]

Carmeliet P. and Luttun A. The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thromb. Haemost, 2001, v. 86, № 1, p. 289–297.

[6]

Chang S. H., Tung K. Y., Wang Y. J. et al. Fabrication of vascularized bone grafts of predetermined shape with hydroxyapatite-collagen gel beads and autogenous mesenchymal stem cell composites. Plast. Reconstr. Surg., 2010, v. 125, № 5, p. 1393–1402.

[7]

Hu X., Yu S. P., Fraser J. L. et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thorac. Cardiovasc. Surg., 2008, v. 135, № 4, p. 799–808.

[8]

Kang J. M., Kang S. W., La W. G. et al. Enhancement of in vivo bone regeneration efficacy of osteogenically undifferentiated human cord blood mesenchymal stem cells. J. Biomed. Mater. Res. A, 2010, v. 93, № 2, p. 666–672.

[9]

Liu M., Xiang Z., Pei F. et al. Repairing defects of rabbit articular cartilage and subchondral bone with biphasic scaffold combined bone marrow stromal stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2010, v. 24, № 1, p. 87–93.

[10]

Re’em T., Tsur-Gang O. and Cohen S. The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFbeta1induced chondrogenesis of human mesenchymal stem cells. Biomaterials, 2010, v. 31, № 26, p. 6746–6755.

[11]

Rouanet P., Duchene M. and Quenet F. Cancer update on breast reconstruction. Bull. Cancer, 2002, v. 89, № 1, p. 125–129.

[12]

Shi Q., Rafii S., Wu M. H. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood, 1998, v. 92, № 2, p. 362–367.

[13]

Shishatskaya E. I., Voinova O. N., Goreva A. V. et al. Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation. J. Mater. Sci. Mater. Med., 2008, v. 19, № 6, p. 2493–2502.

[14]

Xie J., Han Z., Naito M. et al. Articular cartilage tissue engineering based on a mechano-active scaffold made of poly (L-lactideco-epsilon-caprolactone): In vivo performance in adult rabbits. J. Biomed. Mater. Res. B Appl. Biomater, 2010, v. 94, № 1, p. 80–88.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/