DISTRIBUTION OF ALPHA-TUBULIN IN THE STRUCTURES OF RAT FOREBRAIN
I. P. Grigoriyev , M. A. Shklyayeva , O. V. Kirik , Ye. G. Gilerovich , D. E. Korzhevskiy
Morphology ›› 2013, Vol. 143 ›› Issue (1) : 007 -010.
DISTRIBUTION OF ALPHA-TUBULIN IN THE STRUCTURES OF RAT FOREBRAIN
The distribution of alpha-tubulin, the major protein of the microtubules, was studied using immunohistochemistry in the rat forebrain structures. The differential distribution of alpha-tubulin immunoreactivity was detected: high immunoreactivity was found in cingulate and pyriform cortex, olfactory tubercles and optic chiasm, while the weakest immunohistochemical staining was observed in caudatoputamen, superficial layers of septum, cingulum and areas around the third cerebral ventricle. Immunoreactivity in the nervous cells was distributed along perikaryon periphery and in the apical dendrite. It is suggested that the intensity of alpha-tubulin immunohistochemical reaction could reflect the functional state of the neurons.
brain / immunohistochemistry / alpha-tubulin
| [1] |
Коржевский Д. Э., Григорьев И. П. и Отеллин В. А. Применение обезвоживающих фиксаторов, содержащих соли цинка в нейрогистологических исследованиях. Морфология, 2006, т. 129, вып. 1, с. 85–86. |
| [2] |
Коржевский Д. Э., Карпенко М. Н. и Кирик О. В. Белки, ассоциированные с микротрубочками, как показатели дифференцировки и функционального состояния нервных клеток. Морфология, 2011, т. 139, вып. 1, с. 13–21. |
| [3] |
Dráber P., Leu F. J., Viklický V. and Damjanov I. Immunohisto chemical heterogeneity of alpha-tubulin in human epithelia revealed with monoclonal antibodies. Histochemistry, 1987, v. 87, № 2, p. 151–155. |
| [4] |
Field D. J., Collins R. A. and Lee J. C. Heterogeneity of vertebrate brain tubulins. Proc. Natl. Acad. Sci. USA, 1984, v. 81, № 13, p. 4041–4045. |
| [5] |
Gray E. G., Westrum L. E., Burgoyne R. D. and Barton J. Synaptic organization and neuron microtubule distribution. Cell Tissue Res., 1982, v. 226, № 3, p. 579–588. |
| [6] |
Hyams J. S. and Lloyd C. W. Microtubules. New York: Wiley-Liss, 1993. |
| [7] |
Liu H. H. and Brady S. T. cAMP, tubulin, axonal transport, and regeneration. Exp. Neurol., 2004, v. 189, № 2, p. 199–203 |
| [8] |
Matus A., Bernhardt R., Bodmer R. and Alaimo S. Microtubuteassociated protein 2 and tubulin are differently distributed in the dendrites of developing neurons. Neuroscience, 1986, v. 17, № 2, p. 371–389. |
| [9] |
Matus A. I., Walters B. B. and Mughal S. Immunohistochemical demonstration of tubulin associated with microtubules and synaptic junctions in mammalian brain. J. Neurocytol., 1975, v. 4, № 6, p. 733–744. |
| [10] |
MacRae T. H. Tubulin post-translational modifications: enzymes and their mechanisms of action. Eur. J. Biochem., 1997, v. 244, № 2, p. 265–278 |
| [11] |
Naves F. J., Huerta J. J., Garcia-Suarez O. et al. Distribution of immunoreactivity for cytoskeletal (microtubule, microtubule-associated, and neurofilament) proteins in adult human dorsal root ganglia. Anat. Rec., 1996, v. 244, № 2, p. 246–256. |
| [12] |
Pellegrini F. and Budman D. R. Tubulin function, action of anti-tubulin arugs, and new drug development. Cancer Invest., 2005, v. 23, № 3, p. 264–273. |
| [13] |
Paxinos G. and Watson C. The rat brain in stereotaxic coordinates. San Diego, Academic Press, 1986. |
| [14] |
Tischfield M. A. and Engle E. C. Distinct α- and β-tubulin isotypes are required for the positioning, differentiation, and survival of neurons: new support for the «multi-tubulin» hypothesis. Biosci. Rep., 2012, v. 30, № 5, p. 319–330. |
| [15] |
Tsai L. H. and Gleeson J. G. Nucleokinesis in neuronal migration. Neuron, 2005, v. 46, № 3, p. 383–388. |
| [16] |
Villasante A., Wang D., Dobner P. et al. Six mouse a-tubulin mRNAs encode five distinct isotypes: Testisspecific expression of two sister genes. Mol. Cell. Biol., 1986, v. 6, № 7, p. 2409–2419. |
Eco-Vector
/
| 〈 |
|
〉 |