EARLY STAGES OF REGENERATION HISTOGENESIS IN PERIOSTAL PART OF BONE CALLUS IN MAN

R. V. Deyev , I. L. Plaksa , M. O. Mavlikeyev , I. Ya. Bozo , M. S. Abyzova

Morphology ›› 2018, Vol. 153 ›› Issue (2) : 63 -69.

PDF
Morphology ›› 2018, Vol. 153 ›› Issue (2) : 63 -69. DOI: 10.17816/morph.398227
Articles
research-article

EARLY STAGES OF REGENERATION HISTOGENESIS IN PERIOSTAL PART OF BONE CALLUS IN MAN

Author information +
History +
PDF

Abstract

Objective - to study the intercellular interactions during early stages of reparative osteohistogenesis. Materials and methods. The object of the study were fracture hematomas, which were obtained from patients of both sexes aged 15-84 years in the course of reconstructive treatment during the first 12 days after the fracture. Results. The earliest event of bone reparation was the migration to the fracture area of a heterogeneous macrophage population with an active cytokine-synthetic function that resulted in the formation of a local pool of VEGF-producing cells in the hematoma and preceded the appearance of the first thin-walled vessels among the tissue detritus. High mitotic activity of the endothelial cell elements in conjunction with the membrane expression of Flk-1 reflected a close molecular interaction between endothelial cells and cytokine-producing macrophages. The active process of angiogenesis occured in parallel with a rapid increase in the amount of connective tissue. By 12 days, a significant decrease in the total number of vessels was noted, which, together with a decrease in mitotic activity of endotheliocytes, reflected a decrease in angiogenesis activity at the time of formation of the structures of woven bone. Expression of Flk-1 and Flt-4 receptors in osteoblastic cells indicated a cytokine regulation of the processes of bone tissue histogenesis. Conclusion. At the early stages of reparative osteogenesis, VEGF-VEGFR regulatory axis was shown to play a key role in the coordination of intercellular molecular interactions, ensuring a consistent replacement of cell-tissue populations in fracture hematoma.

Keywords

VEGF / fracture hematoma / reparative histogenesis / angiogenesis / VEGF

Cite this article

Download citation ▾
R. V. Deyev, I. L. Plaksa, M. O. Mavlikeyev, I. Ya. Bozo, M. S. Abyzova. EARLY STAGES OF REGENERATION HISTOGENESIS IN PERIOSTAL PART OF BONE CALLUS IN MAN. Morphology, 2018, 153(2): 63-69 DOI:10.17816/morph.398227

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Гололобов В. Г., Деев Р. В. Стволовые стромальные клетки и остеобластический клеточный дифферон // Морфология. 2003. № 1. С. 1-19

[2]

Гололобов В. Г. Посттравматическая регенерация костной ткани. Современный взгляд на проблему // Труды Военно-медицинской академии им. С. М. Кирова. 2004. Т. 257. С. 94-109

[3]

Деев Р. В., Цупкина Н. В., Бозо И. Я., Калигин М. С., Гребнёв А. Р., Исаев А. А., Пинаев Г. П. Тканеинженерный эквивалент кости: методологические основы создания и биологические свойства // Гены и клетки. 2011. Т. 4, вып. 1. С. 62-67

[4]

Bhandari M., Guyatt G. H., Tong D., Adili A., Shaughnessy S. G. Reamed versus nonreamed intramedullary nailing of lower extremity long bone fractures: a systematic overview and metaanalysis // J. Orthop. Trauma. 2000. Vol. 14. P. 2-9.

[5]

Bozo I. Y., Deev R. V., Drobyshev A. Y., Isaev A. A., Eremin I. I. World’s first clinical case of gene-activated bone substitute application case // Rep. Dent. 2016. 8648949.

[6]

Grässel S. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology // Arthritis Res. Ther. 2014. Vol. 16, № 6. P. 485.

[7]

Grundnes O., Reiker O. The importance of the hematoma for fracture healing in rats // As ActaOrthop. Scand. 1993. Vol. 64, № 3. P. 340-342.

[8]

Hong Y. K., Lange-Asschenfeldt B., Velasco P., Hirakawa S., Kunstfeld R., Brown L. F., Bohlen P., Senger D. R., Detmar M. VEGF-A promotes tissue repair-associated lymphatic vessel formation via VEGFR-2 and the α1β1 and α2β1 integrins // FASEB J. 2004. Vol. 18. P. 1111-1113. doi: 10.1096/fj.03- 1179fje.

[9]

Jin K., Zhu Y., Sun Y., Mao X. O. Xie L., Greenberg D. A. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99, № 18. P. 11946-11950. doi: 10.1073/pnas.182296499.

[10]

Komlev V. S., Popov V. K., Mironov A. V., Fedotov A. Yu., Teterina A. Y., Smirnov I. V., Bozo I. Y., Rybko V.A., Deev R. V. 3D printing of octacalcium phosphate bone substitutes // Front. Bioeng. Biotechnol. 2015. Vol. 3. P. 81. doi: 10.3389/ fbioe.2015.00081.

[11]

Mizuno K., Mineo K., Tachibana T., Sumi M. Matsubara T., Hiro hata K. The osteogenetic potential of fracture haematoma subperiosteal and intramuscular transplantation of the haematoma // J. Bone Joint Surg. 1990. Vol. 72-B. P. 822-829.

[12]

Ogilvie C. M., Lu С., Marcucio R., Lee M. Thompson Z., Hu D., Helms J. A., Miclau T. Vascular endothelial growth factor improves bone repair in a murine nonunion model // Iowa Orthop. J. 2012. Vol. 32. P. 90-94.

[13]

Spiller K. L., Anfang R. R., Spiller K. J. The role of macrophage phenotype in vascularization of tissue engineering scaffolds // Biomaterials. 2014. Vol. 35, № 15. P. 4477-4488.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/