MORPHOLOGICAL ANALYSIS OF IN VIVO BIOCOMPATIBILITY OF PRINTED AURICLE PROSTHESIS

P. A Karalkin , A. A. Gryadunova , F. D. A. S. Pereira , V. A Parfyonov , V. A Kasyanov , Ye. A. Bulanova , Ye. V. Koudan , A. D. Knyazeva , N. S. Sergeyeva , Yu. D. Khesuani , V. A Mironov

Morphology ›› 2017, Vol. 152 ›› Issue (6) : 61 -66.

PDF
Morphology ›› 2017, Vol. 152 ›› Issue (6) : 61 -66. DOI: 10.17816/morph.398192
Articles
research-article

MORPHOLOGICAL ANALYSIS OF IN VIVO BIOCOMPATIBILITY OF PRINTED AURICLE PROSTHESIS

Author information +
History +
PDF

Abstract

Objective - to study in vivo biocompatibility of non-biodegradable printed polyurethane auricle prostheses, covered and not covered with an additional layer of a fibrous polyurethane matrix, by placing subcutaneous implants into rats and their subsequent histological and morphometric analysis at different time intervals after the implantation. Materials and methods. Polyurethane prostheses of the external human ear were created on the basis of a digital model using a 3D printer and then were covered by a thin polyurethane micro-fiber layer by means of an electrospinning. In vivo biocompatibility of the constructs obtained was studied 2 weeks, 1 month and 3 months after subcutaneous implantation into 18 sexually mature male Wistar rats. The intensity and nature of reaction of tissues adjacent to the prosthesis were assessed on histological sections. Morphometric analysis included measurement with an eyepiece micrometer of the thickness of the connective-tissue capsule formed around the prosthesis. Mechanical properties of all samples were evaluated using the laboratory device, equipped with strain gauge sensor. Results. Subcutaneously implanted ear prosthesуs were found to retain their size, shape and initial material properties and to cause the formation of a thin connective tissue capsule. Capsule thickness increased gradually during the selected observation periods from 17.6±2.3 μm by the end of the 2nd week to 25.6±4.0 μm by the end of the 1st month and up to 45.0±5.0 μm by the end of the 3rd month. In the absence of microfiber polyurethane coating, highly vascularized connective tissue with the signs of inflammation was found to grow through the pores into an implant. In implants with an additional polyurethane layer no similar ingrowths and signs of inflammation were found. However, in the contact zone of loose fibrous subcutaneous connective tissue with the polyurethane coating, the formation of giant multinucleated cells was observed. Conclusions. Non-biodegradable polyurethane prosthesis of the external ear developed demonstrated a satisfactory biocompatibility in vivo and a long-term cosmetic effect.

Keywords

tissue reactions / in vivo biocompatibility / polyurethane / auricle prosthesis / 3D printing

Cite this article

Download citation ▾
P. A Karalkin, A. A. Gryadunova, F. D. A. S. Pereira, V. A Parfyonov, V. A Kasyanov, Ye. A. Bulanova, Ye. V. Koudan, A. D. Knyazeva, N. S. Sergeyeva, Yu. D. Khesuani, V. A Mironov. MORPHOLOGICAL ANALYSIS OF IN VIVO BIOCOMPATIBILITY OF PRINTED AURICLE PROSTHESIS. Morphology, 2017, 152(6): 61-66 DOI:10.17816/morph.398192

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Кудан Е. В., Перейра Ф. Д. А. С., Парфенов В. А., Касьянов В. А., Хесуани Ю. Д., Буланова Е. А., Миронов В. А. Распластывание тканевых сфероидов, сформированных из первичных фибробластов человека, на поверхности микроволокнистого электроспиннингового полиуретанового матрикса (сканирующее электронно-микроскопическое исследование) // Морфология, 2015. № 6. С. 70-74

[2]

Bichara D. A., O’Sullivan N. A., Pomerantseva I., Zhao X., Sundback C. A., Vacanti J. P., Randolph M.A. The tissue-engineered auricle: past, present and future. Tissue Eng. Part B: Rev. 2012. Vol. 18, № 1. P. 51-61.

[3]

Bly R. A., Bhrany A. D., Murakami C. S., Sie K. C. Microtia re con struction // Facial Plast. Surg. Clin. North Am. 2016. Vol. 24, № 4. P. 577-591.

[4]

Efimov A. E., Agapova O. I., Parfenov V.A., Pereira F. D. A. S., Bu lanova E. A., Mironov V. A., Agapova I. I. Investigating the micro- and nanostructure of microfibrous bioсompatible polyurethane scaffold by scanning probe nanotomography // Nanotechnologies in Russia. 2015. Vol. 10, № 11-12. P. 925-929.

[5]

Gendron C., Schwentker A., van Aalst J. A. Genetic advances in the understanding of microtia // J. Pediatr. Genetics. 2016. Vol. 5, № 4. P. 189-197.

[6]

Huang C., Soenen S. J., Rejman J., Trekker T., Chengxun L., Lagae L., Ceelen W. P., Wilhelm C., Demeester J., De Smedt S. Mag netic electrospun fibers for cancer therapy // Adv. Functional Materials. 2012. Vol. 22. P. 2479-2486.

[7]

Karchin A., Simonovsky F. I., Ratner B. D., Sanders J. E. Melt electrospinning of biodegradable polyurethane scaffolds // Acta Biomaterialia. 2011. Vol. 7, № 9. P. 3277-3284.

[8]

Kasyanov V.A., Pereira F.D. A. S., Parfenov V.A., Kudan E. V., Bulanova E. A., Khesuani Yu. D., Mironov V.A. Development and Implantation of a biocompatible auricular prosthesis // Biomed. Eng. 2016. Vol. 49, № 6. P. 327-330.

[9]

Koudan E. V., Bulanova E. A., Pereira F.D. A. S., Parfenov V.A., Kasyanov V.A., Khesuani U. J., Mironov V.A. Spreading of tissue spheroids on an electrospun polyurethane matrix // Biomed. Eng. 2016. Vol. 50, № 1. P. 1-4.

[10]

Naumann A. Porous polyethylene implants for ear reconstruction of middle to high-grade ear defects // HNO. 2011. Vol. 59, № 2. P. 197-212.

[11]

Wang K., Hou W. D., Wang X., Han C., Vuletic I., Su N., Zhang W. X., Ren Q. S., Chen L., Luo Y. Overcoming foreign-body reaction through nanotopography: biocompatibility and immunoisolation properties of a nanofibrous membrane // Biomaterials. 2016. Vol. 102. P. 249-258.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/