MACRO-MICROANATOMIC CHARACTERISTICS OF MESENTERIC LYMPH NODES IN MICE EXPOSED TO THE ACTION OF SOME SPACEFLIGHT FACTORS
D. B. Nikityuk , S. V. Klochkova , N. T. Alekseyeva , A. G. Kvaratskheliya , V. A Tuteliyan
Morphology ›› 2017, Vol. 152 ›› Issue (6) : 41 -46.
MACRO-MICROANATOMIC CHARACTERISTICS OF MESENTERIC LYMPH NODES IN MICE EXPOSED TO THE ACTION OF SOME SPACEFLIGHT FACTORS
Objective - to study the morphological changes of mesenteric lymph nodes after prolonged exposure to a mixture of gases typical for closed spaces in long-term space flighte and at different time intervals after the end of exposure. Material and methods. On micro-microanatomical level, using histological and morphometric methods, the mesenteric lymph nodes were studied in 160 male mice F1 (CBAxC57BL6) subjected to simultaneous inhalation of a mixture of gases (acetone, acetaldehyde and ethanol) during 160 days. Gas concentrations did not exceed maximum permissible values in manned space vehicles. Structural characteristics of lymph nodes were studied at Days 8, 22, 36 and 70 of exposure and at Days 4, 28, 60 and 90 after its termination (the rehabilitation period). Mesenteric lymph nodes were examined in sections stained with hematoxylin - eosin, and using Van Gieson, Mallory and Weigert methods. Results. Mesenteric lymph nodes were characterized by high sensitivity to the action of radiation-chemical factor, which was manifested by a decrease in the absolute number of lymphoid cells and increased proportion of destructively-modified cells (3.2-3.5 times in comparison with those in control group. After Day 60 of a rehabilitation period, the size of the lymphoid nodules and the proportion of lymphoid nodules with the germinal centers was not different from those in the control group. Typical cellular associations were constantly detected. Lymphoid tissue composition was completely restored - the relative numbers of lymphocytes and lymphoblasts was increased and corresponded to that found in a control group, while the number of degeneratively modified cells was reduced. Conclusions. The results showed high sensitivity of the lymph nodes to the action of the gas mixture, however, the structure of lymphoid tissue gradually recovered by Day 60 of a rehabilitation period.
mesenteric lymph nodes / lymphoid tissue / gas mixture / factors of space flight
| [1] |
Абрамова М. В., Сингх Р. Б., Козлов В. И., Шастун С. А. Изменение структуры функциональных зон и цитоархитектоники лимфатических узлов белых мышей, облученных изотопом Cs137 // Научно-образовательный вестник «Здоровье и образование в XXI веке». 2014. Т. 16, № 10. С. 1-4. |
| [2] |
Автандилов Г. Г. Морфометрия в патологии. М.: Медицина, 1993. 320 с. |
| [3] |
Горчакова О. В., Колмогоров Ю. П., Горчаков В. Н., Мельникова Е. В. Микроэлементы и морфология брыжеечных лимфоузлов на разных этапах онтогенеза // Вестн. Новосибирск. гос. ун-та. Серия: Биология, клиническая медицина. 2015. Т. 13, № 1. С. 11-17. |
| [4] |
Мелехин С. В.,Четвертных В. А.,Чунарева М. В. Структурные изменения и клеточный состав брыжеечных лимфатических узлов у мышей первого поколения после облучения родителей // Морфология. 2014. Т. 146, вып. 4. С. 31-36. |
| [5] |
Мухамедиева Л. Н. Закономерности формирования и гигиеническое регламентирование многокомпонентного загрязнения воздушной среды пилотируемых орбитальных станций: Автореф. дис. … д-ра мед. наук. М., 2003. 50 с. |
| [6] |
Никитюк Д. Б., Клочкова С. В., Алексеева Н. Т., Кварацхелия А. Г. Современные представления об общих закономерностях макромикроскопической анатомии лимфоидных органов // Журн. анат. и гистопатол. 2015. Т. 4, № 2 (14). С. 9-13. |
| [7] |
Ничипорук И. А., Васильева Г. Ю., Рыкова М. П., Антропова Е. Н., Берендеева Т. А., Белоусова И. В. Взаимосвязи психонейроэндокринной системы и иммунного статуса в условиях кратковременной гипокинезии и 7-суточной «сухой» иммерсии // Материалы VII Всеросс. конф. «Механизмы функционирования висцеральных систем». СПб.: Институт физиологии им. И. П. Павлова РАН. 2009. С. 314-315. |
| [8] |
Рыкова М. П. Иммунная система у российских космонавтов после орбитальных полётов // Физиология человека. 2013. Т. 39, № 5. С. 126-136. |
| [9] |
Сапин М. Р., Никитюк Д. Б. Иммунная система, стресс и иммунодефицит. М.: АПП «Джангар», 2000. 184 с. |
| [10] |
Чава С. В., Буклис Ю. В. Структурные характеристики иммунных образований селезенки мышей после воздействия радиационного фактора низкой интенсивности // Морфол. ведомости. 2011. № 4. С. 65-68. |
| [11] |
Anderson R. E., Warner N. L. Ionizing radiation and the immune response // Adv. Immunol. 1977. Vol. 24, № 6. P. 215-335. |
| [12] |
Buravkova L. B., Grogorieva O. V., Rykova M. P. The effect of microgravity on interaction betwen human immune cells and target cells in vitro (flight experiments during ISS-12 missions) / In: Abstract book. Science on European Soyuz to the International Space Station (2001-2005). Toledo: Erasmus Centre, 2006. P. 20. |
| [13] |
Gray D. Understanding germinal centre// Res. Immunol. 2004. Vol. 142, № 3. P. 236-242. |
| [14] |
Larina I. M., Rykova M. P., Antropova E. N., Netreba A. I. The effect of the 8 week weight training in different modes on the condition of the immune system / in: Proceedings of the XIII-th Annual International Exercise. Biochemistry Conference. Seoul, 2006. P. 144-146. |
| [15] |
Morukov B., Rykova M., Antropova E. NK Cells Assessments: A Thirty-Year-Old History of Immune Stress Interaction in Space / Stress Challenges and Immunoty in Space / A. Chouker (ed). Berlin, Heidelberg: Springer-Verlag, 2012. P. 155-164. DOI 10.1007/978-3-642-22272-6_11 |
| [16] |
Morukov B., Rykova M., Antropova E. et al. T-cell immunity and cytokine production in cosmonauts after long-duration space flights / Acta Astronautica. 2011. Vol. 68, Issue 7-8. P. 739-746. DOI 10.1016/j.actaastro.2010.08.036 |
Eco-Vector
/
| 〈 |
|
〉 |