CURRENT HISTOCHEMICAL METHODS OF TISSUE IRON DEMONSTRATION BASED ON PERLS’ REACTION

I. P. Grigoriyev , Ye. A. Kolos , Ye. G. Sukhorukova , D. E. Korzhevskiy

Morphology ›› 2016, Vol. 149 ›› Issue (1) : 85 -88.

PDF
Morphology ›› 2016, Vol. 149 ›› Issue (1) : 85 -88. DOI: 10.17816/morph.397654
Articles
research-article

CURRENT HISTOCHEMICAL METHODS OF TISSUE IRON DEMONSTRATION BASED ON PERLS’ REACTION

Author information +
History +
PDF

Abstract

The article presents the information on the modern modifications of Perls’ reaction including diaminobenzidine enhancement according to R. Meguro (for various tissues), M. A. Smith (for nervous tissue), S. M. Levine (for detection of iron in oligodendrocytes and myelinated nervous fibers), and our own modification for visualization of the nucleolar iron. The analysis is performed of the advantages and disadvantages of these modifications of histochemical demonstration of iron. It is shown that the use of new methodological approaches significantly increases the sensitivity of Perls’ reaction. Control procedures allow to to eliminate the possibility of artifacts.

Keywords

iron / histochemistry / Perls’ reaction / nervous tissue / nucleolus

Cite this article

Download citation ▾
I. P. Grigoriyev, Ye. A. Kolos, Ye. G. Sukhorukova, D. E. Korzhevskiy. CURRENT HISTOCHEMICAL METHODS OF TISSUE IRON DEMONSTRATION BASED ON PERLS’ REACTION. Morphology, 2016, 149(1): 85-88 DOI:10.17816/morph.397654

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Коржевский Д. Э., Сухорукова Е. Г., Григорьев И. П. Распределение железа в микроанатомических структурах черного вещества головного мозга человека // Журн. неврол. и психиатр. 2013. Т. 113, № 6. С. 70-73.

[2]

Сухорукова Е. Г., Григорьев И. П., Колос Е. А., Коржевский Д. Э. Ядрышко клетки - место накопления железа в нейронах черного вещества головного мозга человека // Морфология. 2012. Т. 142, вып. 6. С. 61-63.

[3]

Cesaro P., Nguyen-Legros J., Berger B. et al. Double labelling of blanched neurons in the central nervous system of the rat by retrograde axonal transport of horseradish peroxidase and iron dextran complex // Neurosci. Lett. 1979. Vol. 15, № 1. P. 1-7.

[4]

Connor J. R., Menzies S. L. Relationship of iron to oligodendrocytes and myelination // Glia. 1996. Vol. 17. P. 83-93.

[5]

Gille G., Reichmann H. Iron-dependent functions of mito chondria - relation to neurodegeneration // J. Neural. Transm. 2011. Vol. 118, № 3. P. 349-359.

[6]

Humphrey A. A. Dinitrosoresorcinol - a new specific stain for iron in tissues // Arch. Path. 1935. Vol. 20. P. 256-258.

[7]

Robb-Gaspers S. J., Connor J. R. Metals and Oxidative Damage in Neurological Disorders. New York: Plenum Press, 1997.

[8]

Levine S. M. Oligodendrocytes and myelin sheaths in normal, quaking and shiverer brains are enriched in iron // J. Neurosci. Res. 1991. Vol. 29, № 3. P. 413-419.

[9]

Lison L., Gé rard P. Histochimie Animale: Mé thodes et Problè mes. Paris: Gauthier-Villars, 1936.

[10]

Mallory F.B. Pathological Technique. Philadelphia: W.B. Saunders Co., 1938.

[11]

Meguro R., Asano Y., Odagiri S. et al. Nonheme-iron histochemistry for light and electron microscopy: a historical, theoretical and technical review // Arch. Histol. Cytol. 2007. Vol. 70, № 1. P. 1-19.

[12]

Nguyen-Legros J., Bizot J., Bolesse M., Pulicani J.-P. Noir de diaminobenzidine: une nouvelle méthode histochimique de révélation du fer exogène // Histochemistry. 1980. Vol. 6, № 3. P. 39-244.

[13]

Outten F. W., Theil E. C. Iron-based redox switches in biology // Antioxid. Redox. Signal. 2009. Vol. 11, № 5. P. 1029-1046.

[14]

Perls M. Nachweis von Eisenoxid in gewissen Pigmenten // Virch. Arch. Path. Anat. 1867. Bd. 39, H. 1. S. 42-48.

[15]

Pinero D. J., Connor J. R. Iron in the brain: an important contributor in normal and diseased states // Neuroscientist. 2000. Vol. 6. P. 435-453.

[16]

Quincke H. J. Über das Verhalten der Eisensalze im Tierkörper // Arch. Anat. Phys. 1868. Bd. 35. S. 756-757.

[17]

Smith M. A., Harris P.L., Sayre L. M., Perry G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94, № 18. P. 9866-9868.

[18]

Stehling O., Vashisht A. A., Mascarenhas J. et al. MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity // Science. 2012. Vol. 337. P. 195-199.

[19]

White M. F., Dillingham M. S. Iron-sulphur clusters in nucleic acid processing enzymes // Curr. Opin. Struct. Biol. 2012. Vol. 22, № 1. P. 94-100.

[20]

Youdim M. B., Stephenson G., Ben Shachar D. Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28 // Ann. N. Y. Acad. Sci. 2004. Vol. 1012. P. 306-325.

[21]

Zecca L., Youdim M. B. H., Riederer P. et al. Iron, brain ageing and neurodegenerative disorders // Nat. Rev. Neurosci. 2004. Vol. 5, № 11. P. 863-873.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/