Morphological manifestations of the dynamics of catecholamines binding by erythrocytes during activation and blockade of adrenergic regulatory mechanisms

Evgeniya V. Kuryanova , Andrey V. Tryasuchev , David L. Teply

Morphology ›› 2021, Vol. 159 ›› Issue (4) : 161 -170.

PDF
Morphology ›› 2021, Vol. 159 ›› Issue (4) : 161 -170. DOI: 10.17816/morph.110872
Original Study Articles
research-article

Morphological manifestations of the dynamics of catecholamines binding by erythrocytes during activation and blockade of adrenergic regulatory mechanisms

Author information +
History +
PDF

Abstract

BACKGROUND: Blood cells show sensitivity and reactivity to catecholamines, which is determined by the presence of catecholamine receptors on their membranes. This fact is of significant research interest because in the study of regulatory mechanisms, it is not always sufficient to know the concentration of catecholamines in the blood; thus, it is important to observe their reception by erythrocytes.

AIM: To investigate the dynamics of catecholamine binding on erythrocytes when modeling the stimulation and blockade of adrenergic regulation mechanisms using the cytological method.

MATERIAL AND METHODS: The number of catecholamine granules on erythrocytes was determined using silver nitrate impregnation under conditions of administration of anapriline β-adrenergic receptor blocker (2 mg/kg), acute stress, activation of noradrenergic systems (maprotiline, 10 mg/kg), and their combination.

RESULTS: Intact animals had 145–155 pieces of catecholamine granules per 40 erythrocytes. Medium-sized (0.6–0.9 μm) granules are more common. After the administration of a β-adrenergic receptor blocker, the total number of catecholamine granules decreases 2.8 times because the granules increased in size. Under acute stress, the total number of granules increases almost two times because the granules shrink, which may be a sign of the sensitization of erythrocyte membranes to catecholamines. The stimulation of the noradrenergic system causes a 20% decrease in the number of catecholamine granules due to a decrease in the number of small- and medium-sized granules. Under stress against the background of the activation of the noradrenergic system, the number of granules on erythrocytes is reduced, which may be a sign of adrenergic receptor desensitization.

CONCLUSIONS: The number of catecholamine granules on erythrocytes decreased after the administration of a β-adrenergic receptor blocker and increased during acute stress. The stimulation of the noradrenergic system was accompanied by a decrease in the binding of catecholamines, especially under conditions of acute stress, which indicates the desensitization of erythrocyte adrenergic receptors. Thus, the cytological method is sensitive enough to observe the reception of catecholamines by erythrocytes when exposed to adrenergic structures.

Keywords

adrenaline granules / erythrocytes / adrenergic receptors / β-adrenergic receptor blocker / stress / noradrenergic system

Cite this article

Download citation ▾
Evgeniya V. Kuryanova, Andrey V. Tryasuchev, David L. Teply. Morphological manifestations of the dynamics of catecholamines binding by erythrocytes during activation and blockade of adrenergic regulatory mechanisms. Morphology, 2021, 159(4): 161-170 DOI:10.17816/morph.110872

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Patent SU №1730555/ 03.07.1989. Byul. №34. Astafieva OG, Vilkova EE. Sposob tsitologicheskogo opredeleniya katekholaminov v eritrotsitakh. Available from: https://yandex.ru/patents/doc/SU1730555A1_19920430 (In Russ).

[2]

Патент СССР на изобретение № 1730555/ 03.07.1989. Бюл. №16. Астафьева О.Г., Вилкова Е.Е. Способ цитологического определения катехоламинов в эритроцитах. Режим доступа: https://yandex.ru/patents/doc/SU1730555A1_19920430. Дата обращения: 21.09.2022.

[3]

Dvoryanskiy SA, Tsirkin VI. The development of ideas about endogenous modulators of β-adrenoi M-cholinergic reactivity. Vyatka Medical Bulletin. 2003;(4):23–27. (In Russ).

[4]

Дворянский С.А., Циркин В.И. Развитие представлений об эндогенных модуляторах β-адрено- и М-холинореактивности // Вятский медицинский вестник. 2003. № 4. С. 23–27.

[5]

Manukhin BN, Smurova EA, Nesterova LA. Patterns of 3H-propranolol binding by rat erythrocyte β-adrenergic receptors. Reports of the Academy of Sciences. 1993;332(3):388–390. (In Russ).

[6]

Манухин Б.Н., Смурова Е.А., Нестерова Л.А. Закономерности связывания 3H-пропранолола β-адренорецепторами эритроцитов крыс // Доклады Академии Наук. 1993. Т. 332, № 3. С. 388–390.

[7]

Adderley SP, Sridharan M, Bowles EA, et al. Protein kinases A and C regulate receptor-mediated increases in cAMP in rabbit erythrocytes. Am J Physiol Heart Circ Physiol. 2010;298(2):H587–593. doi: 10.1152/ajpheart.00975.2009

[8]

Adderley S.P., Sridharan M., Bowles E.A., et al. Protein kinases A and C regulate receptor-mediated increases in cAMP in rabbit erythrocytes // Am J Physiol Heart Circ Physiol. 2010. Vol. 298, N 2. P. H587–593. doi: 10.1152/ajpheart.00975.2009

[9]

Hines PC, Zen Q, Burney SN, et al. Novel epinephrine and cyclic AMP-mediated activation of BCAM/Lu-dependent sickle (SS) RBC adhesion. Blood. 2003;101(8):3281–3287. doi: 10.1182/blood-2001-12-0289

[10]

Hines P.C., Zen Q., Burney S.N., et al. Novel epinephrine and cyclic AMP-mediated activation of BCAM/Lu-dependent sickle (SS) RBC adhesion // Blood. 2003. Vol. 101, N 8. P. 3281–3287. doi: 10.1182/blood-2001-12-0289

[11]

Skorkina MYu. Physiological features of blood’s system of frogs Rana Ridibunda Pall. In: Lambert H. (editor). Frogs: Genetic Diversity, Neural Development and Ecological Implications. New York: Nova; 2014. P:137–178.

[12]

Skorkina M.Yu. Physiological features of blood’s system of frogs Rana Ridibunda Pall. In: Lambert H. (editor). Frogs: Genetic Diversity, Neural Development and Ecological Implications. New York: Nova, 2014. P. 137–178.

[13]

Peng W, Ding F, Peng YK, Xie Y. Biological effects of α-adrenergic phentolamine on erythrocyte hemeprotein: Molecular insights from biorecognition behavior, protein dynamics and flexibility. J Photochem Photobiol B. 2017;171:75–84. doi: 10.1016/j.jphotobiol.2017.04.035

[14]

Peng W., Ding F., Peng Y.K., Xie Y. Biological effects of α-adrenergic phentolamine on erythrocyte hemeprotein: Molecular insights from biorecognition behavior, protein dynamics and flexibility // J Photochem Photobiol B. 2017. Vol. 171. P. 75–84. doi: 10.1016/j.jphotobiol.2017.04.035

[15]

Zambrano P, Suwalsky M, Jemiola-Rzeminska M, Strzalka K. α1-and β-adrenergic antagonist labetalol induces morphological changes in human erythrocytes. Biochem Biophys Res Commun. 2018;503(1):209–214. doi: 10.1016/j.bbrc.2018.06.004

[16]

Zambrano P., Suwalsky M., Jemiola-Rzeminska M., Strzalka K. α1-and β-adrenergic antagonist labetalol induces morphological changes in human erythrocytes // Biochem Biophys Res Commun. 2018. Vol. 503, N 1. P. 209–214. doi: 10.1016/j.bbrc.2018.06.004

[17]

Katzung BG, Masters SB, Trevor AJ. Basic and Clinical Pharmacology. McGraw-Hill Companies; 2012. 1245 p.

[18]

Katzung B.G., Masters S.B., Trevor A.J. Basic and Clinical Pharmacology. McGraw-Hill Companies, 2012. 1245 p.

[19]

Borovskaya MK, Kuznetsova EE, Gorohova VG. Structural and functional characteristics of erythrocyte membranes and its change in pathologies of different genesis. Bulletin of VSNC SO RAMN. 2010;(3):334–354. (In Russ).

[20]

Боровская М.К., Кузнецова Э.Э., Горохова В.Г. Структурно-функциональная характеристика мембран эритроцита и ее изменение при патологиях разного генеза // Бюллетень ВСНЦ СО РАМН. 2010. № 3. С. 334–354.

[21]

Yeow N, Tabor RF, Garnier G. Atomic force microscopy: From red blood cells to immunohaematology. Adv Colloid Interface Sci. 2017;249:149–162. doi: 10.1016/j.cis.2017.05.011

[22]

Yeow N., Tabor R.F., Garnier G. Atomic force microscopy: From red blood cells to immunohaematology // Adv Colloid Interface Sci. 2017. Vol. 249. P. 149–162. doi: 10.1016/j.cis.2017.05.011

[23]

Zinoviev SV, Tseluiko SS. Cytochemical characteristics of red blood cells in experimental anti-orthostatic rats. Amur Medical Journal. 2017;(2):54–57. (In Russ). doi: 10.22448/AMJ.2017.2.54-57

[24]

Зиновьев С.В., Целуйко С.С. Цитохимическая характеристика эритроцитов при экспериментальном антиортостатическом вывешивании крыс // Амурский медицинский журнал. 2017. № 2 (18). С. 54–57. doi: 10.22448/AMJ.2017.2.54-57

[25]

Girish V, Vijayalakshmi A. Affordable image analysis using NIH Image/ImageJ. Indian J Cancer. 2004;41(1):47.

[26]

Girish V., Vijayalakshmi A. Affordable image analysis using NIH Image/ImageJ // Indian J Cancer. 2004. Vol. 41, N 1. P. 47.

[27]

Kuryanova EV, Tryasuchev AV, Stupin VO, Teply DL. Features of stress-induced changes in heart rhythm, red blood cell adrenoreactivity and free radical processes in the blood during stimulation of central neurotransmitter systems. Siberian Scientific Medical Journal. 2017;37(1):11–20. (In Russ).

[28]

Курьянова Е.В., Трясучев А.В., Ступин В.О., Тёплый Д.Л. Особенности стресс-индуцированных изменений сердечного ритма, адренореактивности эритроцитов и свободнорадикальных процессов в крови на фоне стимуляции центральных нейромедиаторных систем // Сибирский научный медицинский журнал. 2017. Т. 37, № 1. С. 11–20.

[29]

Spasojević N, Gavrilović L., Dronjak S. Different behavioral effects of maprotiline and fluxilan in rats. Arch Biol Sci. 2008;60(1):33–39. doi: 10.2298/ABS0801033S

[30]

Spasojević N., Gavrilović L., Dronjak S. Different behavioral effects of maprotiline and fluxilan in rats // Arch Biol Sci. 2008. Vol. 60, N 1. P. 33–39. doi: 10.2298/ABS0801033S

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

57

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/