Comparative characteristics of human stem cells
Olha Yu. Pototska , Ekaterina N. Shevchenko
Morphology ›› 2021, Vol. 159 ›› Issue (3) : 75 -97.
Comparative characteristics of human stem cells
Stem cell (SC) therapy is one of the most promising methods of clinical medicine. Although most stem cell-containing products are still being investigated in clinical trials, some of them are already approved for treatment in many countries. Therefore, modern medicine providing basic understanding of SC subtypes, their properties and potential risks should be incorporated in educational programs of medical universities.
The aim of this review is to compare SC types, methods of their procurement, and perspectives of their use.
Stem cells can be grouped according to the age of the donor organism. Embryonic SCs are those isolated from blastocysts, obtained from extracorporeal fertilization, cloning, semi-cloning or parthenogenesis (androgenetic and gynogenetic SCs). Fetal SCs are those isolated from embryonic and fetal tissues before birth or from miscarriage and abortion material (including ectopic pregnancies). Fetal SCs include a special group of perinatal extraembryonic SCs, which are obtained from extraembryonic organs (umbilical cord, amnion, placenta) after birth; among them hematopoietic, mesenchymal, epithelial and decidual cells are distinguished. Adult SCs (somatic or tissue specific) are isolated from different tissues and organs of adult organisms throughout their life. Their properties depend on their location and age of the donor. Additionally, induced pluripotent SCs are created artificially from mature cells by modification of gene expression. Every group of SCs is heterogenous and has its advantages and drawbacks analyzed in this review. Also considered in this review is the application of exosomes produced by stem cells as an alternative to cellular therapy.
embryonic stem cells / perinatal extraembryonic stem cells / adult stem cells / induced pluripotent stem cells / extracellular vesicles
| [1] |
Approved Cellular and Gene Therapy Products [Internet]. Food and Drug Administration; 2022 [cited 2022 Sept 13]. Available from: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products. |
| [2] |
Approved Cellular and Gene Therapy Products [Internet]. Food and Drug Administration; 2022 [дата обращения: 13.09.2022]. Доступ по ссылке: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products. |
| [3] |
Sipp D, Caulfield T, Kaye J, et al. Marketing of unproven stem cell-based interventions: A call to action. Sci Transl Med. 2017;9(397):eaag0426. doi: 10.1126/scitranslmed.aag0426 |
| [4] |
Sipp D., Caulfield T., Kaye J., et al. Marketing of unproven stem cell-based interventions: A call to action // Sci Transl Med. 2017. Vol. 9, N 397. P. eaag0426. doi: 10.1126/scitranslmed.aag0426 |
| [5] |
Stem cell facts [Internet]. International Society for Stem Cell Research; 2018. 6 p. [cited 2022 Sept 13]. Available from: https://www.closerlookatstemcells.org/wp-content/uploads/2018/10/stem-cell-facts.pdf. |
| [6] |
Stem cell facts [Internet]. International Society for Stem Cell Research; 2018. 6 p. [дата обращения: 13.09.2022]. Доступ по ссылке: https://www.closerlookatstemcells.org/wp-content/uploads/2018/10/stem-cell-facts.pdf. |
| [7] |
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–1147. doi: 10.1126/science.282.5391.1145. Erratum in: Science. 1998;282(5395):1827. |
| [8] |
Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., et al. Embryonic stem cell lines derived from human blastocysts // Science. 1998. Vol. 282, N 5391. P. 1145–1147. doi: 10.1126/science.282.5391.1145. Erratum in: Science. 1998. Vol. 282, N 5395. P. 1827. |
| [9] |
Stachelscheid H, Wulf-Goldenberg A, Eckert K, et al. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors. J Tissue Eng Regen Med. 2013;7(9):729–741. doi: 10.1002/term.1467 |
| [10] |
Stachelscheid H., Wulf-Goldenberg A., Eckert K., et al. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors // J Tissue Eng Regen Med. 2013. Vol. 7, N 9. P. 729–741. doi: 10.1002/term.1467 |
| [11] |
Zhang WY, de Almeida PE, Wu JC. Teratoma formation: A tool for monitoring pluripotency in stem cell research. In: StemBook. Cambridge (MA): Harvard Stem Cell Institute; 2012. |
| [12] |
Zhang W.Y., de Almeida P.E., Wu J.C. Teratoma formation: A tool for monitoring pluripotency in stem cell research. In: StemBook. Cambridge (MA): Harvard Stem Cell Institute, 2012. |
| [13] |
Hentze H, Soong PL, Wang ST, et al. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2009;2(3):198–210. doi: 10.1016/j.scr.2009.02.002 |
| [14] |
Hentze H., Soong P.L., Wang S.T., et al. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies // Stem Cell Res. 2009. Vol. 2, N 3. P. 198–210. doi: 10.1016/j.scr.2009.02.002 |
| [15] |
Drukker M, Katz G, Urbach A, et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A. 2002;99(15):9864–9869. doi: 10.1073/pnas.142298299 |
| [16] |
Drukker M., Katz G., Urbach A., et al. Characterization of the expression of MHC proteins in human embryonic stem cells // Proc Natl Acad Sci U S A. 2002. Vol. 99, N 15. P. 9864–9869. doi: 10.1073/pnas.142298299 |
| [17] |
Liu Y, Li Y, Hwang A, et al. Comparison of three embryo culture methods for derivation of human embryonic stem cells from discarded embryos. Cell Reprogram. 2011;13(3):233–239. doi: 10.1089/cell.2010.0092 |
| [18] |
Liu Y., Li Y., Hwang A., et al. Comparison of three embryo culture methods for derivation of human embryonic stem cells from discarded embryos // Cell Reprogram. 2011. Vol. 13, N 3. P. 233–239. doi: 10.1089/cell.2010.0092 |
| [19] |
Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000;227(2):271–278. doi: 10.1006/dbio.2000.9912 |
| [20] |
Amit M., Carpenter M.K., Inokuma M.S., et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture // Dev Biol. 2000. Vol. 227, N 2. P. 271–278. doi: 10.1006/dbio.2000.9912 |
| [21] |
Zucchelli M, Ström S, Holm F, et al. In vivo differentiated human embryonic stem cells can acquire chromosomal aberrations more frequently than in vitro during the same period. Stem Cells Dev. 2012;21(18):3363–3371. doi: 10.1089/scd.2012.0066 |
| [22] |
Zucchelli M., Ström S., Holm F., et al. In vivo differentiated human embryonic stem cells can acquire chromosomal aberrations more frequently than in vitro during the same period // Stem Cells Dev. 2012. Vol. 21, N 18. P. 3363–3371. doi: 10.1089/scd.2012.0066 |
| [23] |
Yang R, Liu F, Wang J, et al. Epidermal stem cells in wound healing and their clinical applications. Stem Cell Res Ther. 2019;10(1):229. doi: 10.1186/s13287-019-1312-z. Erratum in: Stem Cell Res Ther. 2019;11(1):447. |
| [24] |
Yang R., Liu F., Wang J., et al. Epidermal stem cells in wound healing and their clinical applications // Stem Cell Res Ther. 2019. Vol. 10, N 1. P. 229. doi: 10.1186/s13287-019-1312-z. Erratum in: Stem Cell Res Ther. 2020. Vol. 11, N 1. P. 447. |
| [25] |
Hovatta O, Jaconi M, Töhönen V, et al. A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes. PLoS One. 2010;5(4):e10263. doi: 10.1371/journal.pone.0010263 |
| [26] |
Hovatta O., Jaconi M., Töhönen V., et al. A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes // PLoS One. 2010. Vol. 5, N 4. P. e10263. doi: 10.1371/journal.pone.0010263 |
| [27] |
Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11(4):268–277. doi: 10.1038/nrc3034 |
| [28] |
Ben-David U., Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells // Nat Rev Cancer. 2011. Vol. 11, N 4. P. 268–277. doi: 10.1038/nrc3034 |
| [29] |
Geens M, Mateizel I, Sermon K, et al. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum Reprod. 2009;24(11):2709–2717. doi: 10.1093/humrep/dep262 |
| [30] |
Geens M., Mateizel I., Sermon K., et al. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos // Hum Reprod. 2009. Vol. 24, N 11. P. 2709–2717. doi: 10.1093/humrep/dep262 |
| [31] |
Feki A, Bosman A, Dubuisson JB, et al. Derivation of the first Swiss human embryonic stem cell line from a single blastomere of an arrested four-cell stage embryo. Swiss Med Wkly. 2008;138(37-38):540–550. |
| [32] |
Feki A., Bosman A., Dubuisson J.B., et al. Derivation of the first Swiss human embryonic stem cell line from a single blastomere of an arrested four-cell stage embryo // Swiss Med Wkly. 2008. Vol. 138, N 37-38. P. 540–550. |
| [33] |
Tachibana M, Amato P, Sparman M, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153(6):1228–1238. doi: 10.1016/j.cell.2013.05.006 |
| [34] |
Tachibana M., Amato .P, Sparman M., et al. Human embryonic stem cells derived by somatic cell nuclear transfer // Cell. 2013. Vol. 153, N 6. P. 1228–1238. doi: 10.1016/j.cell.2013.05.006 |
| [35] |
Chung YG, Eum JH, Lee JE, et al. Human somatic cell nuclear transfer using adult cells. Cell Stem Cell. 2014;14(6):777–780. doi: 10.1016/j.stem.2014.03.015 |
| [36] |
Chung Y.G., Eum J.H., Lee J.E., et al. Human somatic cell nuclear transfer using adult cells // Cell Stem Cell. 2014. Vol. 14, N 6. P. 777–7780. doi: 10.1016/j.stem.2014.03.015 |
| [37] |
Tao H, Chen X, Wei A, et al. Comparison of Teratoma Formation between Embryonic Stem Cells and Parthenogenetic Embryonic Stem Cells by Molecular Imaging. Stem Cells Int. 2018:7906531. doi: 10.1155/2018/7906531 |
| [38] |
Tao H., Chen X., Wei A., et al. Comparison of Teratoma Formation between Embryonic Stem Cells and Parthenogenetic Embryonic Stem Cells by Molecular Imaging // Stem Cells Int. 2018. P. 7906531. doi: 10.1155/2018/7906531 |
| [39] |
McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984;37(1):179–183. doi: 10.1016/0092-8674(84)90313-1 |
| [40] |
McGrath J., Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes // Cell. 1984. Vol. 37, N 1. P. 179–183. doi: 10.1016/0092-8674(84)90313-1 |
| [41] |
Abaturov AE. Exogenous factors affect genomic imprinting 3. Impact of ancillary reproductive technologies. Zdorov’e Rebenka. 2016;(7):162–169. (In Russ). doi: 10.22141/2224-0551.7.75.2016.86744 |
| [42] |
Абатуров А.Е. Влияние экзогенных факторов на геномный импринтинг 3. Влияние вспомогательных репродуктивных технологий // Здоровье ребенка. 2016. № 7. С. 162–169. doi: 10.22141/2224-0551.7.75.2016.86744 |
| [43] |
Strain L, Warner JP, Johnston T, Bonthron DT. A human parthenogenetic chimaera. Nat Genet. 1995;11(2):164–169. doi: 10.1038/ng1095-164 |
| [44] |
Strain L., Warner J.P., Johnston T., Bonthron D.T. A human parthenogenetic chimaera // Nat Genet. 1995. Vol. 11, N 2. P. 164–169. doi: 10.1038/ng1095-164 |
| [45] |
Winberg J, Gustavsson P, Lagerstedt-Robinson K, et al. Chimerism resulting from parthenogenetic activation and dispermic fertilization. Am J Med Genet A. 2010;152A(9):2277–2286. doi: 10.1002/ajmg.a.33594 |
| [46] |
Winberg J., Gustavsson P., Lagerstedt-Robinson K., et al. Chimerism resulting from parthenogenetic activation and dispermic fertilization // Am J Med Genet A. 2010. Vol. 152A, N 9. P. 2277–2286. doi: 10.1002/ajmg.a.33594 |
| [47] |
Giltay JC, Brunt T, Beemer FA, et al. Polymorphic detection of a parthenogenetic maternal and double paternal contribution to a 46,XX/46,XY hermaphrodite. Am J Hum Genet. 1998;62(4):937–940. doi: 10.1086/301796 |
| [48] |
Giltay J.C., Brunt T., Beemer F.A., et al. Polymorphic detection of a parthenogenetic maternal and double paternal contribution to a 46,XX/46,XY hermaphrodite // Am J Hum Genet. 1998. Vol. 62, N 4. P. 937–940. doi: 10.1086/301796 |
| [49] |
Humpherys D, Eggan K, Akutsu H, et al. Epigenetic instability in ES cells and cloned mice. Science. 2001;293(5527):95–97. doi: 10.1126/science.1061402 |
| [50] |
Humpherys D., Eggan K., Akutsu H., et al. Epigenetic instability in ES cells and cloned mice // Science. 2001. Vol. 293, N 5527. P. 95–97. doi: 10.1126/science.1061402 |
| [51] |
Revazova ES, Turovets NA, Kochetkova OD, et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2007;9(3):432–449. doi: 10.1089/clo.2007.0033 |
| [52] |
Revazova E.S., Turovets N.A., Kochetkova O.D., et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts // Cloning Stem Cells. 2007. Vol. 9, N 3. P. 432–449. doi: 10.1089/clo.2007.0033 |
| [53] |
Kim K, Lerou P, Yabuuchi A, et al. Histocompatible embryonic stem cells by parthenogenesis. Science. 2007;315(5811):482–486. doi: 10.1126/science.1133542 |
| [54] |
Kim K., Lerou P., Yabuuchi A., et al. Histocompatible embryonic stem cells by parthenogenesis // Science. 2007. Vol. 315, N 5811. P. 482–486. doi: 10.1126/science.1133542 |
| [55] |
Bennett M, Yu YY, Stoneman E, et al. Hybrid resistance: ‘negative’ and ‘positive’ signaling of murine natural killer cells. Semin Immunol. 1995;7(2):121–127. doi: 10.1006/smim.1995.0016 |
| [56] |
Bennett M., Yu Y.Y., Stoneman E., et al. Hybrid resistance: ‘negative’ and ‘positive’ signaling of murine natural killer cells // Semin Immunol. 1995. Vol. 7, N 2. P. 121–127. doi: 10.1006/smim.1995.0016 |
| [57] |
Zhao Q, Wang J, Zhang Y, et al. Generation of histocompatible androgenetic embryonic stem cells using spermatogenic cells. Stem Cells. 2010;28(2):229–239. doi: 10.1002/stem.283 |
| [58] |
Zhao Q., Wang J., Zhang Y., et al. Generation of histocompatible androgenetic embryonic stem cells using spermatogenic cells // Stem Cells. 2010. Vol. 28, N 2. P. 229–239. doi: 10.1002/stem.283 |
| [59] |
Ding C, Huang S, Qi Q, et al. Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line. Stem Cells Dev. 2015;24(19):2307–2316. doi: 10.1089/scd.2015.0031 |
| [60] |
Ding C., Huang S., Qi Q., et al. Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line // Stem Cells Dev. 2015. Vol. 24, N 19. P. 2307–2316. doi: 10.1089/scd.2015.0031 |
| [61] |
Sagi I, Chia G, Golan-Lev T, et al. Derivation and differentiation of haploid human embryonic stem cells. Nature. 2016;532(7597):107–111. doi: 10.1038/nature17408 |
| [62] |
Sagi I., Chia G., Golan-Lev T., et al. Derivation and differentiation of haploid human embryonic stem cells // Nature. 2016. Vol. 532, N 7597. P. 107–111. doi: 10.1038/nature17408 |
| [63] |
Liu G, Wang X, Liu Y, et al. Arrayed mutant haploid embryonic stem cell libraries facilitate phenotype-driven genetic screens. Nucleic Acids Res. 2017;45(22):e180. doi: 10.1093/nar/gkx857 |
| [64] |
Liu G., Wang X., Liu Y., et al. Arrayed mutant haploid embryonic stem cell libraries facilitate phenotype-driven genetic screens // Nucleic Acids Res. 2017. Vol. 45, N 22. P. e180. doi: 10.1093/nar/gkx857 |
| [65] |
Tesarik J. Reproductive semi-cloning respecting biparental embryo origin: embryos from syngamy between a gamete and a haploidized somatic cell. Hum Reprod. 2002;17(8):1933–1937. doi: 10.1093/humrep/17.8.1933 |
| [66] |
Tesarik J. Reproductive semi-cloning respecting biparental embryo origin: embryos from syngamy between a gamete and a haploidized somatic cell // Hum Reprod. 2002. Vol. 17, N 8. P. 1933–1937. doi: 10.1093/humrep/17.8.1933 |
| [67] |
Li W, Shuai L, Wan H, et al. Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature. 2012;490(7420):407–411. doi: 10.1038/nature11435 |
| [68] |
Li W., Shuai L., Wan H., et al. Androgenetic haploid embryonic stem cells produce live transgenic mice // Nature. 2012. Vol. 490, N 7420. P. 407–411. doi: 10.1038/nature11435 |
| [69] |
Li Z, Wan H, Feng G, et al. Birth of fertile bimaternal offspring following intracytoplasmic injection of parthenogenetic haploid embryonic stem cells. Cell Res. 2016;26(1):135–138. doi: 10.1038/cr.2015.151 |
| [70] |
Li Z., Wan H., Feng G., et al. Birth of fertile bimaternal offspring following intracytoplasmic injection of parthenogenetic haploid embryonic stem cells // Cell Res. 2016. Vol. 26, N 1. P. 135–138. doi: 10.1038/cr.2015.151 |
| [71] |
Zhong C, Xie Z, Yin Q, et al. Parthenogenetic haploid embryonic stem cells efficiently support mouse generation by oocyte injection. Cell Res. 2016;26(1):131–134. doi: 10.1038/cr.2015.132 |
| [72] |
Zhong C., Xie Z., Yin Q., et al. Parthenogenetic haploid embryonic stem cells efficiently support mouse generation by oocyte injection // Cell Res. 2016. Vol. 26, N 1. P. 131–134. doi: 10.1038/cr.2015.132 |
| [73] |
Horii T, Hatada I. Genome Editing Using Mammalian Haploid Cells. Int J Mol Sci. 2015;16(10):23604–23614. doi: 10.3390/ijms161023604 |
| [74] |
Horii T., Hatada I. Genome Editing Using Mammalian Haploid Cells // Int J Mol Sci. 2015. Vol. 16, N 10. P. 23604–23614. doi: 10.3390/ijms161023604 |
| [75] |
Zhong C, Li J. Efficient Generation of Gene-Modified Mice by Haploid Embryonic Stem Cell-Mediated Semi-cloned Technology. Methods Mol Biol. 2017;1498:121–133. doi: 10.1007/978-1-4939-6472-7_8 |
| [76] |
Zhong C., Li J. Efficient Generation of Gene-Modified Mice by Haploid Embryonic Stem Cell-Mediated Semi-cloned Technology // Methods Mol Biol. 2017. Vol. 1498. P. 121–133. doi: 10.1007/978-1-4939-6472-7_8 |
| [77] |
Ishii T, Eto K. Fetal stem cell transplantation: Past, present, and future. World J Stem Cells. 2014;6(4):404–420. doi: 10.4252/wjsc.v6.i4.404 |
| [78] |
Ishii T., Eto K. Fetal stem cell transplantation: Past, present, and future // World J Stem Cells. 2014. Vol. 6, N 4. P. 404–420. doi: 10.4252/wjsc.v6.i4.404 |
| [79] |
Deuse T, Stubbendorff M, Tang-Quan K, et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant. 2011;20(5):655–667. doi: 10.3727/096368910X536473 |
| [80] |
Deuse T., Stubbendorff M., Tang-Quan K., et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells // Cell Transplant. 2011. Vol. 20, N 5. P. 655–667. doi: 10.3727/096368910X536473 |
| [81] |
Brunstein CG, Petersdorf EW, DeFor TE, et al. Impact of Allele-Level HLA Mismatch on Outcomes in Recipients of Double Umbilical Cord Blood Transplantation. Biol Blood Marrow Transplant. 2016;22(3):487–492. doi: 10.1016/j.bbmt.2015.09.025 |
| [82] |
Brunstein C.G., Petersdorf E.W., DeFor T.E., et al. Impact of Allele-Level HLA Mismatch on Outcomes in Recipients of Double Umbilical Cord Blood Transplantation // Biol Blood Marrow Transplant. 2016. Vol. 22, N 3. P. 487–492. doi: 10.1016/j.bbmt.2015.09.025 |
| [83] |
Dessels C, Alessandrini M, Pepper MS. Factors Influencing the Umbilical Cord Blood Stem Cell Industry: An Evolving Treatment Landscape. Stem Cells Transl Med. 2018;7(9):643–650. doi: 10.1002/sctm.17-0244 |
| [84] |
Dessels C., Alessandrini M., Pepper M.S. Factors Influencing the Umbilical Cord Blood Stem Cell Industry: An Evolving Treatment Landscape // Stem Cells Transl Med. 2018. Vol. 7, N 9. P. 643–650. doi: 10.1002/sctm.17-0244 |
| [85] |
Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22(7):1330–1337. doi: 10.1634/stemcells.2004-0013 |
| [86] |
Wang H.S., Hung S.C., Peng S.T., et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord // Stem Cells. 2004. Vol. 22, N 7. P. 1330–1337. doi: 10.1634/stemcells.2004-0013 |
| [87] |
Weiss ML, Medicetty S, Bledsoe AR, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells. 2006;24(3):781–792. doi: 10.1634/stemcells.2005-0330 |
| [88] |
Weiss M.L., Medicetty S., Bledsoe A.R., et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease // Stem Cells. 2006. Vol. 24, N 3. P. 781–792. doi: 10.1634/stemcells.2005-0330 |
| [89] |
Davies JE, Walker JT, Keating A. Concise Review: Wharton’s Jelly: The Rich, but Enigmatic, Source of Mesenchymal Stromal Cells. Stem Cells Transl Med. 2017;6(7):1620–1630. doi: 10.1002/sctm.16-0492 |
| [90] |
Davies J.E., Walker J.T., Keating A. Concise Review: Wharton’s Jelly: The Rich, but Enigmatic, Source of Mesenchymal Stromal Cells // Stem Cells Transl Med. 2017. Vol. 6, N 7. P. 1620–1630. doi: 10.1002/sctm.16-0492 |
| [91] |
Beeravolu N, McKee C, Alamri A, et al. Isolation and Characterization of Mesenchymal Stromal Cells from Human Umbilical Cord and Fetal Placenta. J Vis Exp. 2017;(122):55224. doi: 10.3791/55224 |
| [92] |
Beeravolu N., McKee C., Alamri A., et al. Isolation and Characterization of Mesenchymal Stromal Cells from Human Umbilical Cord and Fetal Placenta // J Vis Exp. 2017. N 122. P. 55224. doi: 10.3791/55224 |
| [93] |
Stubbendorff M, Deuse T, Hua X, et al. Immunological properties of extraembryonic human mesenchymal stromal cells derived from gestational tissue. Stem Cells Dev. 2013;22(19):2619–2629. doi: 10.1089/scd.2013.0043 |
| [94] |
Stubbendorff M., Deuse T., Hua X., et al. Immunological properties of extraembryonic human mesenchymal stromal cells derived from gestational tissue // Stem Cells Dev. 2013. Vol. 22, N 19. P. 2619–2629. doi: 10.1089/scd.2013.0043 |
| [95] |
Ventura Ferreira MS, Bienert M, Müller K, et al. Comprehensive characterization of chorionic villi-derived mesenchymal stromal cells from human placenta. Stem Cell Res Ther. 2018;9(1):28. doi: 10.1186/s13287-017-0757-1 |
| [96] |
Ventura Ferreira M.S., Bienert M., Müller K., et al. Comprehensive characterization of chorionic villi-derived mesenchymal stromal cells from human placenta // Stem Cell Res Ther. 2018. Vol. 9, N 1. P. 28. doi: 10.1186/s13287-017-0757-1 |
| [97] |
Xie N, Li Z, Adesanya TM, et al. Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice. J Cell Mol Med. 2016;20(1):29–37. doi: 10.1111/jcmm.12489 |
| [98] |
Xie N., Li Z., Adesanya T.M., et al. Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice // J Cell Mol Med. 2016. Vol. 20, N 1. P. 29–37. doi: 10.1111/jcmm.12489 |
| [99] |
Nagaya N, Fujii T, Iwase T, et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol. 2004;287(6):H2670–2676. doi: 10.1152/ajpheart.01071.2003 |
| [100] |
Nagaya N., Fujii T., Iwase T., et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis // Am J Physiol Heart Circ Physiol. 2004. Vol. 287, N 6. P. H2670–2676. doi: 10.1152/ajpheart.01071.2003 |
| [101] |
Tran TC, Kimura K, Nagano M, et al. Identification of human placenta-derived mesenchymal stem cells involved in re-endothelialization. J Cell Physiol. 2011;226(1):224–235. doi: 10.1002/jcp.22329 |
| [102] |
Tran T.C., Kimura K., Nagano M., et al. Identification of human placenta-derived mesenchymal stem cells involved in re-endothelialization // J Cell Physiol. 2011. Vol. 226, N 1. P. 224–235. doi: 10.1002/jcp.22329 |
| [103] |
Komaki M, Numata Y, Morioka C, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther. 2017;8(1):219. doi: 10.1186/s13287-017-0660-9 |
| [104] |
Komaki M., Numata Y., Morioka C., et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis // Stem Cell Res Ther. 2017. Vol. 8, N 1. P. 219. doi: 10.1186/s13287-017-0660-9 |
| [105] |
Vegh I, Grau M, Gracia M, et al. Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development. Cancer Gene Ther. 2013;20(1):8–16. doi: 10.1038/cgt.2012.71 |
| [106] |
Vegh I., Grau M., Gracia M., et al. Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development // Cancer Gene Ther. 2013. Vol. 20, N 1. P. 8–16. doi: 10.1038/cgt.2012.71 |
| [107] |
Paris JL, de la Torre P, Manzano M, et al. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors. Acta Biomater. 2016;33:275–282. doi: 10.1016/j.actbio.2016.01.017 |
| [108] |
Paris J.L., de la Torre P., Manzano M., et al. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors // Acta Biomater. 2016. Vol. 33. P. 275–282. doi: 10.1016/j.actbio.2016.01.017 |
| [109] |
Zhou Y, Gan SU, Lin G, et al. Characterization of human umbilical cord lining-derived epithelial cells and transplantation potential. Cell Transplant. 2011;20(11-12):1827–1841. doi: 10.3727/096368910X564085 |
| [110] |
Zhou Y., Gan S.U., Lin G., et al. Characterization of human umbilical cord lining-derived epithelial cells and transplantation potential // Cell Transplant. 2011. Vol. 20, N 11-12. P. 1827–1841. doi: 10.3727/096368910X564085 |
| [111] |
Miki T. Stem cell characteristics and the therapeutic potential of amniotic epithelial cells. Am J Reprod Immunol. 2018. Vol. 80, N 4. P. e13003. doi: 10.1111/aji.13003 |
| [112] |
Miki T. Stem cell characteristics and the therapeutic potential of amniotic epithelial cells // Am J Reprod Immunol. 2018. Vol. 80, N 4. P. e13003. doi: 10.1111/aji.13003 |
| [113] |
Miki T, Lehmann T, Cai H, et al. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23(10):1549–1559. doi: 10.1634/stemcells.2004-0357 |
| [114] |
Miki T., Lehmann T., Cai H., et al. Stem cell characteristics of amniotic epithelial cells // Stem Cells. 2005. Vol. 23, N 10. P. 1549–1559. doi: 10.1634/stemcells.2004-0357 |
| [115] |
Motedayyen H, Esmaeil N, Tajik N, et al. Method and key points for isolation of human amniotic epithelial cells with high yield, viability and purity. BMC Res Notes. 2017;10(1):552. doi: 10.1186/s13104-017-2880-6 |
| [116] |
Motedayyen H., Esmaeil N., Tajik N., et al. Method and key points for isolation of human amniotic epithelial cells with high yield, viability and purity // BMC Res Notes. 2017. Vol. 10, N 1. P. 552. doi: 10.1186/s13104-017-2880-6 |
| [117] |
Bryzek A, Czekaj P, Plewka D, et al. Expression and co-expression of surface markers of pluripotency on human amniotic cells cultured in different growth media. Ginekol Pol. 2013;84(12):1012–1024. doi: 10.17772/gp/1673 |
| [118] |
Bryzek A., Czekaj P., Plewka D., et al. Expression and co-expression of surface markers of pluripotency on human amniotic cells cultured in different growth media // Ginekol Pol. 2013. Vol. 84, N 12. P. 1012–1024. doi: 10.17772/gp/1673 |
| [119] |
Lim IJ, Phan TT. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane. Cell Transplant. 2014;23(4-5):497–503. doi: 10.3727/096368914X678346 |
| [120] |
Lim I.J., Phan T.T. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane // Cell Transplant. 2014. Vol. 23, N 4-5. P. 497–503. doi: 10.3727/096368914X678346 |
| [121] |
Ermolaeva M, Neri F, Ori A, Rudolph KL. Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol. 2018;19(9):594–610. doi: 10.1038/s41580-018-0020-3 |
| [122] |
Ermolaeva M., Neri F., Ori A., Rudolph K.L. Cellular and epigenetic drivers of stem cell ageing // Nat Rev Mol Cell Biol. 2018. Vol. 19, N 9. P. 594–610. doi: 10.1038/s41580-018-0020-3 |
| [123] |
Goodell MA, Nguyen H, Shroyer N. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol. 2015;16(5):299–309. doi: 10.1038/nrm3980 |
| [124] |
Goodell M.A., Nguyen H., Shroyer N. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments // Nat Rev Mol Cell Biol. 2015. Vol. 16, N 5. P. 299–309. doi: 10.1038/nrm3980 |
| [125] |
Ema H, Morita Y, Suda T. Heterogeneity and hierarchy of hematopoietic stem cells. Exp Hematol. 2014;42(2):74–82.e2. doi: 10.1016/j.exphem.2013.11.004 |
| [126] |
Ema H., Morita Y., Suda T. Heterogeneity and hierarchy of hematopoietic stem cells // Exp Hematol. 2014. Vol. 42, N 2. P. 74–82.e2. doi: 10.1016/j.exphem.2013.11.004 |
| [127] |
Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, et al. Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Exp Hematol. 2008;36(6):742–751. doi: 10.1016/j.exphem.2008.03.010 |
| [128] |
Ratajczak M.Z., Zuba-Surma E.K., Wysoczynski M., et al. Very small embryonic-like stem cells: characterization, developmental origin, and biological significance // Exp Hematol. 2008. Vol. 36, N 6. P. 742–751. doi: 10.1016/j.exphem.2008.03.010 |
| [129] |
Abbott A. Doubt cast over tiny stem cells. Nature. 2013;499(7459):390. doi: 10.1038/499390a |
| [130] |
Abbott A. Doubt cast over tiny stem cells // Nature. 2013. Vol. 499, N 7459. P. 390. doi: 10.1038/499390a |
| [131] |
Ratajczak MZ, Zuba-Surma E, Wojakowski W, et al. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia. 2014;28(3):473–484. doi: 10.1038/leu.2013.255 |
| [132] |
Ratajczak M.Z., Zuba-Surma E., Wojakowski W., et al. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate // Leukemia. 2014. Vol. 28, N 3. P. 473–484. doi: 10.1038/leu.2013.255 |
| [133] |
Ferraro F, Celso CL, Scadden D. Adult stem cels and their niches. Adv Exp Med Biol. 2010;695:155–168. doi: 10.1007/978-1-4419-7037-4_11 |
| [134] |
Ferraro F., Celso C.L., Scadden D. Adult stem cels and their niches // Adv Exp Med Biol. 2010. Vol. 695. P. 155–168. doi: 10.1007/978-1-4419-7037-4_11 |
| [135] |
Wallenfang MR. Aging within the Stem Cell niche. Dev Cell. 2007;13(5):603–604. doi: 10.1016/j.devcel.2007.10.011 |
| [136] |
Wallenfang M.R. Aging within the Stem Cell niche // Dev Cell. 2007. Vol. 13, N 5. P. 603–604. doi: 10.1016/j.devcel.2007.10.011 |
| [137] |
Rumman M, Dhawan J, Kassem M. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration. Stem Cells. 2015;33(10):2903–2912. doi: 10.1002/stem.2056 |
| [138] |
Rumman M., Dhawan J., Kassem M. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration // Stem Cells. 2015. Vol. 33, N 10. P. 2903–2912. doi: 10.1002/stem.2056 |
| [139] |
Rodgers JT, King KY, Brett JO, et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature. 2014;510(7505):393–396. doi: 10.1038/nature13255 |
| [140] |
Rodgers J.T., King K.Y., Brett J.O., et al. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert) // Nature. 2014. Vol. 510, N 7505. P. 393–396. doi: 10.1038/nature13255 |
| [141] |
Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006;441(7097):1068–1074. doi: 10.1038/nature04956 |
| [142] |
Morrison S.J., Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer // Nature. 2006. Vol. 441, N 7097. P. 1068–1074. doi: 10.1038/nature04956 |
| [143] |
Bu P, Chen KY, Lipkin SM, Shen X. Asymmetric division: a marker for cancer stem cells in early stage tumors? Oncotarget. 2013;4(7):950–951. doi: 10.18632/oncotarget.1029 |
| [144] |
Bu P., Chen K.Y., Lipkin S.M., Shen X. Asymmetric division: a marker for cancer stem cells in early stage tumors? // Oncotarget. 2013. Vol. 4, N 7. P. 950–951. doi: 10.18632/oncotarget.1029 |
| [145] |
Buczacki SJ, Zecchini HI, Nicholson AM, et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature. 2013;495(7439):65–69. doi: 10.1038/nature11965 |
| [146] |
Buczacki S.J., Zecchini H.I., Nicholson A.M., et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5 // Nature. 2013. Vol. 495, N 7439. P. 65–69. doi: 10.1038/nature11965 |
| [147] |
Maximow A. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909). Folia Haematol. 1909;(8):125–134. |
| [148] |
Maximow A. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. (Demonstrationsvortrag, gehalten in der ausserordentlichen Sitzung der Berliner Hämatologischen Gesellschaft am 1. Juni 1909) // Folia Haematol. 1909. N 8. P. 125–134. |
| [149] |
Müller AM, Huppertz S, Henschler R. Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path? Transfus Med Hemother. 2016;43(4):247–254. doi: 10.1159/000447748 |
| [150] |
Müller A.M., Huppertz S., Henschler R. Hematopoietic Stem Cells in Regenerative Medicine: Astray or on the Path? // Transfus Med Hemother. 2016. Vol. 43, N 4. P. 247–254. doi: 10.1159/000447748 |
| [151] |
Sirinoglu Demiriz I, Tekgunduz E, Altuntas F. What is the most appropriate source for hematopoietic stem cell transplantation? Peripheral stem cell/bone marrow/cord blood. Bone Marrow Res. 2012:834040. doi: 10.1155/2012/834040 |
| [152] |
Sirinoglu Demiriz I., Tekgunduz E., Altuntas F. What is the most appropriate source for hematopoietic stem cell transplantation? Peripheral stem cell/bone marrow/cord blood // Bone Marrow Res. 2012. P. 834040. doi: 10.1155/2012/834040 |
| [153] |
Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–650. doi: 10.1002/jor.1100090504 |
| [154] |
Caplan A.I. Mesenchymal stem cells // J Orthop Res. 1991. Vol. 9, N 5. 641–650. doi: 10.1002/jor.1100090504 |
| [155] |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905 |
| [156] |
Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement // Cytotherapy. 2006. Vol. 8, N 4. P. 315–317. doi: 10.1080/14653240600855905 |
| [157] |
Berebichez-Fridman R, Montero-Olvera PR. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ Med J. 2018;18(3):e264–e277. doi: 10.18295/squmj.2018.18.03.002 |
| [158] |
Berebichez-Fridman R., Montero-Olvera P.R. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review // Sultan Qaboos Univ Med J. 2018. Vol. 18, N 3. P. e264–e277. doi: 10.18295/squmj.2018.18.03.002 |
| [159] |
Caplan AI. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl Med. 2017;6(6):1445–1451. doi: 10.1002/sctm.17-0051 |
| [160] |
Caplan A.I. Mesenchymal Stem Cells: Time to Change the Name! // Stem Cells Transl Med. 2017. Vol. 6, N 6. P. 1445–1451. doi: 10.1002/sctm.17-0051 |
| [161] |
Sacchetti B, Funari A, Remoli C, et al. No Identical “Mesenchymal Stem Cells” at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels. Stem Cell Reports. 2016;6(6):897–913. doi: 10.1016/j.stemcr.2016.05.011 |
| [162] |
Sacchetti B., Funari A., Remoli C., et al. No Identical “Mesenchymal Stem Cells” at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels // Stem Cell Reports. 2016. Vol. 6, N 6. P. 897–913. doi: 10.1016/j.stemcr.2016.05.011 |
| [163] |
Isobe Y, Koyama N, Nakao K, et al. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int J Oral Maxillofac Surg. 2016;45(1):124–131. doi: 10.1016/j.ijom.2015.06.022 |
| [164] |
Isobe Y., Koyama N., Nakao K., et al. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp // Int J Oral Maxillofac Surg. 2016. Vol. 45, N 1. P. 124–131. doi: 10.1016/j.ijom.2015.06.022 |
| [165] |
Sipp D, Robey PG, Turner L. Clear up this stem-cell mess. Nature. 2018;561(7724):455–457. doi: 10.1038/d41586-018-06756-9 |
| [166] |
Sipp D., Robey P.G., Turner L. Clear up this stem-cell mess // Nature. 2018. Vol. 561, N 7724. P. 455–457. doi: 10.1038/d41586-018-06756-9 |
| [167] |
Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–313. doi: 10.1016/j.stem.2008.07.003 |
| [168] |
Crisan M., Yap S., Casteilla L., et al. A perivascular origin for mesenchymal stem cells in multiple human organs // Cell Stem Cell. 2008. Vol. 3, N 3. P. 301–313. doi: 10.1016/j.stem.2008.07.003 |
| [169] |
De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101–109. doi: 10.1159/000071150 |
| [170] |
De Ugarte D.A., Morizono K., Elbarbary A., et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow // Cells Tissues Organs. 2003. Vol. 174, N 3. P. 101–109. doi: 10.1159/000071150 |
| [171] |
Li CY, Wu XY, Tong JB, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther. 2015;6(1):55. doi: 10.1186/s13287-015-0066-5 |
| [172] |
Li C.Y., Wu X.Y., Tong J.B., et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy // Stem Cell Res Ther. 2015. Vol. 6, N 1. P. 55. doi: 10.1186/s13287-015-0066-5 |
| [173] |
Sebo ZL, Jeffery E, Holtrup B, Rodeheffer MS. A mesodermal fate map for adipose tissue. Development. 2018;145(17):dev166801. doi: 10.1242/dev.166801 |
| [174] |
Sebo Z.L., Jeffery E., Holtrup B., Rodeheffer M.S. A mesodermal fate map for adipose tissue // Development. 2018. Vol. 145, N 17. P. dev166801. doi: 10.1242/dev.166801 |
| [175] |
González EAP. Heterogeneity in adipose stem cells. In: Stem Cells Heterogeneity-Novel Concepts. Cham: Springer; 2019. P:119–150. |
| [176] |
González E.A.P. Heterogeneity in adipose stem cells. In: Stem Cells Heterogeneity-Novel Concepts. Cham: Springer, 2019. P. 119–150. |
| [177] |
Usoltceva EO, Dzhemlikhanova LK, Niauri DA, et al. Endometrial stem cells expansion capability for local and systemic routes of administration in a model of experimentally injured endometrium. Journal of Obstetrics and Women’s Diseases. 2016;65(1):62–68. (In Russ). doi: 10.17816/JOWD65162-68 |
| [178] |
Усольцева Е.О., Джемлиханова Л.Х., Ниаури Д.А., и др. Способность клеточного продукта на основе эндометриальных стволовых клеток к экспансии при локальном и системном введении в условиях экспериментальной модели заболевания эндометрия // Журнал акушерства и женских болезней. 2016. Т. 65, № 1. С. 62–68. doi: 10.17816/JOWD65162-68 |
| [179] |
Cuenca J, Le-Gatt A, Castillo V, et al. The Reparative Abilities of Menstrual Stem Cells Modulate the Wound Matrix Signals and Improve Cutaneous Regeneration. Front Physiol. 2018;9:464. doi: 10.3389/fphys.2018.00464 |
| [180] |
Cuenca J., Le-Gatt A., Castillo V., et al. The Reparative Abilities of Menstrual Stem Cells Modulate the Wound Matrix Signals and Improve Cutaneous Regeneration // Front Physiol. 2018. Vol. 9. P. 464. doi: 10.3389/fphys.2018.00464 |
| [181] |
Sagitov II, Shafigullina AK, Saleeva GT, et al. Deriving population of ectomesenchymal cells with properties of stem progenitor cells from pulp of permanent teeth. Genes and Cells. 2014;(3):112–117. (In Russ). |
| [182] |
Сагитов И.И., Шафигуллина А.К., Салеева Г.Т., и др. Получение популяции эктомезенхимных клеток со свойствами стволовых и прогениторных клеток из пульпы постоянных зубов // Гены и клетки. 2014. № 3. C. 112–117. |
| [183] |
Shamsutdinov MI, Titova MA, Saleeva GT, Kiyasov AP. The Expression of Epithelial (EMA, ESA) and Mesenchymal (a-SMA, CD31) Antigens in Human Dental Pulp Cells. Genes and Cells. 2009;4(1):52–58. (In Russ). |
| [184] |
Шамсутдинов М.И., Титова М.А., Салеева Г.Т., Киясов А.Л. Экспрессия эпителиальных (EMA, ESA) и мезенхималыных (A-SMA, CD31) антигенов в клетках пульпы зубов человека // Клеточная трансплантология и тканевая инженерия. 2009. Т. 4, № 1. С. 52–58. |
| [185] |
Janebodin K, Horst OV, Ieronimakis N, et al. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PLoS One. 2011;6(11):e27526. doi: 10.1371/journal.pone.0027526 |
| [186] |
Janebodin K., Horst O.V., Ieronimakis N., et al. Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice // PLoS One. 2011. Vol. 6, N 11. P. e27526. doi: 10.1371/journal.pone.0027526 |
| [187] |
Koltsova AM, Zenin VV, Turilova VI, et al. The derivation and characterization of mesenchymal stem cell line, isolated from human pulp of a deciduous tooth. Cytology. 2018;60(12):955–968. (In Russ). doi: 10.1134/S0041377118120015 |
| [188] |
Кольцова А.М., Зенин В.В., Турилова В.И., и др. Получение и характеристика линии мезенхимных стволовых клеток, выделенной из пульпы молочного зуба человека // Цитология. 2018. T. 60, № 12. C. 955–968. doi: 10.1134/S0041377118120015 |
| [189] |
Lin X, Dong R, Diao S, et al. SFRP2 enhanced the adipogenic and neuronal differentiation potentials of stem cells from apical papilla. Cell Biol Int. 2017;41(5):534–543. doi: 10.1002/cbin.10757 |
| [190] |
Lin X., Dong R., Diao S., et al. SFRP2 enhanced the adipogenic and neuronal differentiation potentials of stem cells from apical papilla // Cell Biol Int. 2017. Vol. 41, N 5. P. 534–543. doi: 10.1002/cbin.10757 |
| [191] |
Chai Y, Jiang X, Ito Y, et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 2000;127(8):1671–1679. doi: 10.1242/dev.127.8.1671 |
| [192] |
Chai Y., Jiang X., Ito Y., et al. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis // Development. 2000. Vol. 127, N 8. P. 1671–1679. doi: 10.1242/dev.127.8.1671 |
| [193] |
Romeo L, Diomede F, Gugliandolo A, et al. Moringin Induces Neural Differentiation in the Stem Cell of the Human Periodontal Ligament. Sci Rep. 2018;8(1):9153. doi: 10.1038/s41598-018-27492-0 |
| [194] |
Romeo L., Diomede F., Gugliandolo A., et al. Moringin Induces Neural Differentiation in the Stem Cell of the Human Periodontal Ligament // Sci Rep. 2018. Vol. 8, N 1. P. 9153. doi: 10.1038/s41598-018-27492-0 |
| [195] |
Patil R, Kumar BM, Lee WJ, et al. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor. Exp Cell Res. 2014;320(1):92–107. doi: 10.1016/j.yexcr.2013.10.005 |
| [196] |
Patil R., Kumar B.M., Lee W.J., et al. Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor // Exp Cell Res. 2014. Vol. 320, N 1. P. 92–107. doi: 10.1016/j.yexcr.2013.10.005 |
| [197] |
Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347(6217):78–81. doi: 10.1126/science.1260825 |
| [198] |
Tomasetti C., Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions // Science. 2015. Vol. 347, N 6217. P. 78–81. doi: 10.1126/science.1260825 |
| [199] |
Page ME, Lombard P, Ng F, et al. The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell. 2013;13(4):471–482. doi: 10.1016/j.stem.2013.07.010 |
| [200] |
Page M.E., Lombard P., Ng F., et al. The epidermis comprises autonomous compartments maintained by distinct stem cell populations // Cell Stem Cell. 2013. Vol. 13, N 4. P. 471–482. doi: 10.1016/j.stem.2013.07.010 |
| [201] |
Moghadasi Boroujeni S, Koontz A, Tseropoulos G, et al. Neural crest stem cells from human epidermis of aged donors maintain their multipotency in vitro and in vivo. Sci Rep. 2019;9(1):9750. doi: 10.1038/s41598-019-46140-9 |
| [202] |
Moghadasi Boroujeni S., Koontz A., Tseropoulos G., et al. Neural crest stem cells from human epidermis of aged donors maintain their multipotency in vitro and in vivo // Sci Rep. 2019. Vol. 9, N 1. P. 9750. doi: 10.1038/s41598-019-46140-9 |
| [203] |
Gnedeva KYu, Vorotelyak EA, Vasiliev AV, et al. Differential and morphogenetic potential of rat dermal papilla cells. Biology Bulletin. 2011;38(6):653–658. (In Russ). doi: 10.1134/S1062359011060021 |
| [204] |
Гнедева К.Ю., Воротеляк Е.А., Васильев А.В., и др. Дифференцировочный и морфогенетический потенциал клеток дермальной папиллы крысы // Известия Российской академии наук. Серия биологическая. 2011. Т. 38, № 6. С. 653–658. |
| [205] |
Asakawa K, Toyoshima KE, Tsuji T. Functional Hair Follicle Regeneration by the Rearrangement of Stem Cells. Methods Mol Biol. 2017;1597:117–134. doi: 10.1007/978-1-4939-6949-4_9 |
| [206] |
Asakawa K., Toyoshima K.E., Tsuji T. Functional Hair Follicle Regeneration by the Rearrangement of Stem Cells // Methods Mol Biol. 2017. Vol. 1597. P. 117–134. doi: 10.1007/978-1-4939-6949-4_9 |
| [207] |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. doi: 10.1016/j.cell.2007.11.019 |
| [208] |
Takahashi K., Tanabe K., Ohnuki M., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors // Cell. 2007. Vol. 131, N 5. P. 861–872. doi: 10.1016/j.cell.2007.11.019 |
| [209] |
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–1920. doi: 10.1126/science.1151526 |
| [210] |
Yu J., Vodyanik M.A., Smuga-Otto K., et al. Induced pluripotent stem cell lines derived from human somatic cells // Science. 2007. Vol. 318, N 5858. P. 1917–1920. doi: 10.1126/science.1151526 |
| [211] |
Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol. 2002;241(1):172–182. doi: 10.1006/dbio.2001.0501 |
| [212] |
Santos F., Hendrich B., Reik W., Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo // Dev Biol. 2002. Vol. 241, N 1. P. 172–182. doi: 10.1006/dbio.2001.0501 |
| [213] |
Lin SL. Concise review: Deciphering the mechanism behind induced pluripotent stem cell generation. Stem Cells. 2011;29(11):1645–1649. doi: 10.1002/stem.744 |
| [214] |
Lin S.L. Concise review: Deciphering the mechanism behind induced pluripotent stem cell generation // Stem Cells. 2011. Vol. 29, N 11. P. 1645–1649. doi: 10.1002/stem.744 |
| [215] |
Muchkayeva IA, Dashinimayev EB, Artyukhov AS, et al. Reprogramming human dermal papilla cells to a pluripotent state. Acta Naturae. 2014;6(1):48–57. (In Russ). |
| [216] |
Мучкаева И.А., Дашинимаев Э.Б., Артюхов А.С., и др. Репрограммирование клеток дермальной папиллы человека до плюрипотентного состояния // Acta Naturae. 2014. Т. 6, № 1 (20). С. 48–57. |
| [217] |
Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018;6:e4370. doi: 10.7717/peerj.4370 |
| [218] |
Omole A.E., Fakoya A.O.J. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications // PeerJ. 2018. Vol. 6. P. e4370. doi: 10.7717/peerj.4370 |
| [219] |
Kooreman NG, Kim Y, de Almeida PE, et al. Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo. Cell Stem Cell. 2018;22(4):501–513.e7. doi: 10.1016/j.stem.2018.01.016 |
| [220] |
Kooreman N.G., Kim Y., de Almeida P.E., et al. Autologous iPSC-Based Vaccines Elicit Anti-tumor Responses In Vivo // Cell Stem Cell. 2018. Vol. 22, N 4. P. 501–513.e7. doi: 10.1016/j.stem.2018.01.016 |
| [221] |
Ji J, Ng SH, Sharma V, et al. Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells. Stem Cells. 2012;30(3):435–440. doi: 10.1002/stem.1011 |
| [222] |
Ji J., Ng S.H., Sharma V., et al. Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells // Stem Cells. 2012. Vol. 30, N 3. P. 435–440. doi: 10.1002/stem.1011 |
| [223] |
Lo Sardo V, Ferguson W, Erikson GA, et al. Influence of donor age on induced pluripotent stem cells. Nat Biotechnol. 2017;35(1):69–74. doi: 10.1038/nbt.3749 |
| [224] |
Lo Sardo V., Ferguson W., Erikson G.A., et al. Influence of donor age on induced pluripotent stem cells // Nat Biotechnol. 2017. Vol. 35, N 1. P. 69–74. doi: 10.1038/nbt.3749 |
| [225] |
Cai J, Li W, Su H, et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem. 2010;285(15):11227–11234. doi: 10.1074/jbc.M109.086389 |
| [226] |
Cai J., Li W., Su H., et al. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells // J Biol Chem. 2010. Vol. 285, N 15. P. 11227–11234. doi: 10.1074/jbc.M109.086389 |
| [227] |
Li Z, Lu H, Yang W, et al. Mouse SCNT ESCs have lower somatic mutation load than syngeneic iPSCs. Stem Cell Reports. 2014;2(4):399–405. doi: 10.1016/j.stemcr.2014.02.005 |
| [228] |
Li Z., Lu H., Yang W., et al. Mouse SCNT ESCs have lower somatic mutation load than syngeneic iPSCs // Stem Cell Reports. 2014. Vol. 2, N 4. P. 399–405. doi: 10.1016/j.stemcr.2014.02.005 |
| [229] |
Mayshar Y, Ben-David U, Lavon N, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. 2010;7(4):521–531. doi: 10.1016/j.stem.2010.07.017 |
| [230] |
Mayshar Y., Ben-David U., Lavon N., et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells // Cell Stem Cell. 2010. Vol. 7, N 4. P. 521–531. doi: 10.1016/j.stem.2010.07.017 |
| [231] |
Schoenhals M, Kassambara A, De Vos J, et al. Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun. 2009;383(2):157–162. doi: 10.1016/j.bbrc.2009.02.156 |
| [232] |
Schoenhals M., Kassambara A., De Vos J., et al. Embryonic stem cell markers expression in cancers // Biochem Biophys Res Commun. 2009. Vol. 383, N 2. P. 157–162. doi: 10.1016/j.bbrc.2009.02.156 |
| [233] |
Horikawa I, Park KY, Isogaya K, et al. Δ133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Differ. 2017;24(6):1017–1028. doi: 10.1038/cdd.2017.48 |
| [234] |
Horikawa I., Park K.Y., Isogaya K., et al. Δ133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells // Cell Death Differ. 2017. Vol. 24, N 6. P. 1017–1028. doi: 10.1038/cdd.2017.48 |
| [235] |
Li W, Zhou H, Abujarour R, et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells. 2009;27(12):2992–3000. doi: 10.1002/stem.240 |
| [236] |
Li W., Zhou H., Abujarour R., et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2 // Stem Cells. 2009. Vol. 27, N 12. P. 2992–3000. doi: 10.1002/stem.240 |
| [237] |
Li Y, Zhang Q, Yin X, et al. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 2011;21(1):196–204. doi: 10.1038/cr.2010.142 |
| [238] |
Li Y., Zhang Q., Yin X., et al. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules // Cell Res. 2011. Vol. 21, N 1. P. 196–204. doi: 10.1038/cr.2010.142 |
| [239] |
Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16(2):115–130. doi: 10.1038/nrd.2016.245 |
| [240] |
Shi Y., Inoue H., Wu J.C., Yamanaka S. Induced pluripotent stem cell technology: a decade of progress // Nat Rev Drug Discov. 2017. Vol. 16, N 2. P. 115–130. doi: 10.1038/nrd.2016.245 |
| [241] |
Si-Tayeb K, Noto FK, Sepac A, et al. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev Biol. 2010;10:81. doi: 10.1186/1471-213X-10-81 |
| [242] |
Si-Tayeb K., Noto F.K., Sepac A., et al. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors // BMC Dev Biol. 2010. Vol. 10. P. 81. doi: 10.1186/1471-213X-10-81 |
| [243] |
Lin SL, Chang DC, Ying SY, et al. MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways. Cancer Res. 2010;70(22):9473–9482. doi: 10.1158/0008-5472.CAN-10-2746 |
| [244] |
Lin S.L., Chang D.C., Ying S.Y., et al. MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of the CDK2 and CDK4/6 cell cycle pathways // Cancer Res. 2010. Vol. 70, N 22. P. 9473–9482. doi: 10.1158/0008-5472.CAN-10-2746 |
| [245] |
Deng XY, Wang H, Wang T, et al. Non-viral methods for generating integration-free, induced pluripotent stem cells. Curr Stem Cell Res Ther. 2015;10(2):153–158. doi: 10.2174/1574888x09666140923101914 |
| [246] |
Deng X.Y., Wang H., Wang T., et al. Non-viral methods for generating integration-free, induced pluripotent stem cells // Curr Stem Cell Res Ther. 2015. Vol. 10, N 2. P. 153–158. doi: 10.2174/1574888x09666140923101914 |
| [247] |
Lim J, Kim J, Kang J, Jo D. Partial somatic to stem cell transformations induced by cell-permeable reprogramming factors. Sci Rep. 2014;4:4361. doi: 10.1038/srep04361 |
| [248] |
Lim J., Kim J., Kang J., Jo D. Partial somatic to stem cell transformations induced by cell-permeable reprogramming factors // Sci Rep. 2014. Vol. 4. P. 4361. doi: 10.1038/srep04361 |
| [249] |
Liu X, Sun H, Qi J, et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol. 2013;15(7):829–838. doi: 10.1038/ncb2765 |
| [250] |
Liu X., Sun H., Qi J., et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming // Nat Cell Biol. 2013. Vol. 15, N 7. P. 829–838. doi: 10.1038/ncb2765 |
| [251] |
Nagashima T, Shimizu K, Matsumoto R, Honda H. Selective Elimination of Human Induced Pluripotent Stem Cells Using Medium with High Concentration of L-Alanine. Sci Rep. 2018;8(1):12427. doi: 10.1038/s41598-018-30936-2 |
| [252] |
Nagashima T., Shimizu K., Matsumoto R., Honda H. Selective Elimination of Human Induced Pluripotent Stem Cells Using Medium with High Concentration of L-Alanine // Sci Rep. 2018. Vol. 8, N 1. P. 12427. doi: 10.1038/s41598-018-30936-2 |
| [253] |
Murray LMA, Krasnodembskaya AD. Concise Review: Intercellular Communication Via Organelle Transfer in the Biology and Therapeutic Applications of Stem Cells. Stem Cells. 2019;37(1):14–25. doi: 10.1002/stem.2922 |
| [254] |
Murray L.M.A., Krasnodembskaya A.D. Concise Review: Intercellular Communication Via Organelle Transfer in the Biology and Therapeutic Applications of Stem Cells // Stem Cells. 2019. Vol. 37, N 1. P. 14–25. doi: 10.1002/stem.2922 |
| [255] |
Phinney DG, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472. doi: 10.1038/ncomms9472 |
| [256] |
Phinney D.G., Di Giuseppe M., Njah J., et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs // Nat Commun. 2015. Vol. 6. P. 8472. doi: 10.1038/ncomms9472 |
Eco-Vector
/
| 〈 |
|
〉 |