EXPERIMENTAL BASIS OF THE USE OF POLYCAPROLACTONE-BASED SCAFFOLDS MINERALIZED WITH VATERITE FOR STIMULATION OF BONE TISSUE REGENERATION
A. N. Ivanov , M. S. Savelyeva , M. O. Kurtukova , D. A. Tyapkina , R. A. Surmenev , M. A. Surmeneva , B. V. Parakhonskiy , S. N. Shkarina , V. Yu. Ul’yanov , I. O. Bugaeva , I. A. Norkin
Morphology ›› 2019, Vol. 156 ›› Issue (4) : 79 -84.
EXPERIMENTAL BASIS OF THE USE OF POLYCAPROLACTONE-BASED SCAFFOLDS MINERALIZED WITH VATERITE FOR STIMULATION OF BONE TISSUE REGENERATION
Objective - to investigate the regeneration of bone tissue in albino rats after bone defect replacement with a scaffold made of polycaprolactone (PCL) and vaterite (CaCO3). Material and methods. The experiment was carried out on 20 outbred albino rats. The PCL-scaffolds with a foreign protein were implanted into the femoral defect area in animals of the control group (n=10), and PCL/CaCO3-scaffolds were implanted into the rats of the experimental group (n=10). The evaluation of reparative processes was performed using microscopy of the hematoxylin- and eosin-stained femoral diaphysis cross-sections. Results. In animals of the control group 28 days after implantation the scaffold was separated by a connective and bone tissue, no signs of osteogenesis were detected in the matrix. In animals of the experimental group, the formation of bone trabeculae was observed in the matrix due to its osteoinductive properties. Conclusion. PLC/CaCO3-scaffolds are biocompatible, integrate well into bone tissue of experimental animals, and have pronounced osteoinductive effect. The prospects of clinical approbation of this type of matrix for the stimulation of bone tissue regeneration in traumatological and orthopedic patients have been experimentally substantiated.
bone tissue / regeneration / lower limbs / biocompatibility / scaffolds / vaterite / polycaprolactone
| [1] |
Иванов А. Н., Козадаев M.Н., Богомолова Н. В., Матвеева О. В., Пучиньян Д. М., Норкин И. А., Сальковский Ю. Е., Любунь Г. П. Исследование биосовместимости матриц на основе поликапролактона и гидроксиапатита в условиях in vivo // Цитология. 2015. Т. 57, вып. 4. С. 286-293 |
| [2] |
Новочадов В. В. Проблема управления клеточным заселением и ремоделированием тканеинженерных матриц для восстановления суставного хряща // Вестн. Волгоградск. гос. ун-та. 2013. Т. 1, вып. 5. С. 19-28 |
| [3] |
Садовой М. А., Ларионов П. М., Самохин А. Г., Рожнова О. М. Клеточные матрицы (скаффолды) для целей регенерации кости: современное состояние проблемы // Хирургия позвоночника. 2014. № 2. С. 79-86 |
| [4] |
Do A. V., Khorsand B., Geary S. M., Salem A. K. 3D Printing of Scaffolds for Tissue Regeneration Applications // Adv. Healthcare Mater. 2015. Vol. 4, № 12. P. 1742-1762. doi: 10.1002/adhm.201500168 |
| [5] |
El-Fiqi A., Kim J. H., Kim H. W. Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug // ACS Appl. Mater. Interfaces. 2015. Vol. 7, № 2. P. 1140-1152. doi: 10.1021/am5077759 |
| [6] |
Mkhabela V., Ray S. S. Biodegradation and bioresorption of poly (e-caprolactone) nanocomposite scaffolds // Int. J. Biol. Macromol. 2015. № 79. P. 186-192. doi: 10.1016/j.ijbiomac.2015.04.056 |
| [7] |
Neto A. S., Ferreira J. M. F. Synthetic and Marine-Derived Porous Scaffolds for Bone Tissue Engineering // Materials (Basel). 2018. Vol. 11, № 9. Р. E1702. doi: 10.3390/ma11091702 |
| [8] |
Savelyeva M. S., Abalymov A. A., Lyubun G. P., Vidyasheva I. V., Yashchenok A. M., Douglas T. E. L., Gorin D. A., Parakhonskiy B. V. Vaterite coatings on electrospun polymeric fibers for biomedical applications // J. Biomed. Mater. Res. Part A. 2017. № 105, № 1. P. 94-103. doi: 10.1002/jbm.a.35870 |
| [9] |
Savelyeva M. S., Ivanov A. N., Kurtukova M. O., Atkin V. S., Ivanova A., Lyubun G. P., Martyukova A. V., Cherevko E. I., Sargsyan A. K., Fedonnikov A. S., Norkin I. A., Skirtach A. G., Gorin D. A., Parakhonskiy B. V. Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: synthesis, loading and in vivo applications // Mater Sci. Eng. C. Mater Biol Appl. 2018. Vol. 85. P. 1-12. doi: 10.1016/j. msec.2017.12.019 |
| [10] |
Schröder R., Besch L., Pohlit H., Panthöfer M., Roth W., Frey H., Tremel W., Unger R. E. Particles of vaterite, a metastable CaCO3 polymorph, exhibit high biocompatibility for human osteoblasts and endothelial cells and may serve as a biomaterial for rapid boneregeneration // J. Tissue Eng. Regen. Med. 2018. Vol. 12, № 7. P. 1754-1768. doi: 10.1002/term.2703 |
| [11] |
Svenskaya Y., Gorin D., Parakhonskiy B. V., Sukhorukov G. Point-wise laser effect on NIH/3T3 cells impregnated with photosensitizer-loaded porous calcium carbonate microparticles // 2015 IEEE Int. Conf. on Nanotechnol. 2015. P. 1513-1516. doi: 10.1109/NANO.2015.7388931 |
| [12] |
Svenskaya Y., Parakhonskiy B. V., Haase A., Atkin V., Lukyanets E., Gorin D. A., Antolini R. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer // Biophys. Chem. 2013. № 182. P. 11-15. doi: 10.1016/j. bpc.2013.07.006 |
| [13] |
Zhang Y., Xia L., Zhai D., Shi M., LuoY., FengC., FangB., YinJ., ChangJ., WuC. Mesoporous bioactive glass nanolayerfunctionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis // Nanoscale. 2015. Vol. 7, № 45. P. 1-28. doi: 10.1039/c5nr05421d |
Ivanov A.N., Savelyeva M.S., Kurtukova M.O., Tyapkina D.A., Surmenev R.A., Surmeneva M.A., Parakhonskiy B.V., Shkarina S.N., Ul’yanov V.Y., Bugaeva I.O., Norkin I.A.
/
| 〈 |
|
〉 |