EMBRYONAL DEVELOPMENT OF THE PERITONEAL CONNECTIVE TISSUE OF ALBINO MICE (ELECTRON MICROSCOPIC STUDY)
V. F. Ivanova , S. V. Kostyukevich
Morphology ›› 2019, Vol. 156 ›› Issue (4) : 67 -73.
EMBRYONAL DEVELOPMENT OF THE PERITONEAL CONNECTIVE TISSUE OF ALBINO MICE (ELECTRON MICROSCOPIC STUDY)
Objective - to study ultrastructural changes in the mesenchyme of the embryo participating in embryonic development of peritoneal connective tissue in mice. Material and methods. Mesenchymal cells and the structure of fibroblasts during the process of histogenesis of the connective tissue of the peritoneum were studied by electron microscopy and morphometry in 25 mice embryos on the 13th and 21st days of intrauterine development. Results. On the 13th day of mice embryogenesis, the submesothelial tissue was represented by mesenchyme, the differentiation of the cells of which was accompanied by their nonspecific changes and the appearance of numerous mitoses. On the 15th day of embryogenesis and onward, the size and quantity of organelles responsible for collagen synthesis in mesenchymal cells increased, and secretory vesicles appeared in the rough endoplasmic reticulum. Single collagen fibrils were found in submesothelial tissue. Conclusions. In the process of embryonic development of the peritoneal connective tissue in mice, collagen biosynthesis begins in the rough endoplasmic reticulum of mesenchymal cells as a result of the appearance of secretory vesicles containing protocollagen fibrils. The observed changes manifesting in the form of appearing numerous secretory vacuoles and protocollagen fibrils in the fibroblasts cytoplasm, plasma membrane destruction and the loss of significant portions of them, are indicative of holocrine secretion of collagen fibrils.
peritoneum / connective tissue / ultrastructure / embryonic development
| [1] |
Афанасьев Ю. И., Омельянин Н. М. Система соединительных тканей // Руководство по гистологии / Под ред. Р. К. Данилова. СПб.: СпецЛит, 2011. Т. 1. С. 203-236. |
| [2] |
Иванова В. Ф. Эмбриональное и постэмбриональное развитие париетальной и висцеральной брюшины белых мышей // Арх. анат. 1975. Т. 68, вып. 6. С. 45-53. |
| [3] |
Иванова В. Ф., Костюкевич С. В. Ультраструктурное изучение плазматических клеток слизистой оболочки органов пищеварения при патологии // Эксперим. и клин. гастроэнтерол. 2017. № 7 (143). С. 101-106. |
| [4] |
Радостина А. И. Динамика ультраструктуры фибробластов в процессе пре-и постнатального развития дермы крыс по данным электронной микроскопии // Арх. анат. 1985. Т. 88, вып. 4. С. 76-80. |
| [5] |
Шехтер А. В., Берченко Г. Н. Фибробласты и развитие соединительной ткани: ультраструктурные аспекты биосинтеза, фибриллогенеза и катаболизма коллагена // Арх. пат. 1978. Т. 60, вып. 8. С. 70-80. |
| [6] |
Birk D. E., Trelstad R. L. Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation // J. Cell Biol. 1986. Vol. 103, № 1. P. 231-240. |
| [7] |
Fernandez-Madrid F., Noonan S., Riddle J. The «spindle-shaped» body in fibroblasts: intracellular collagen fibrils // J. Anat. 1981. Vol. 132, № 2. P. 157-166. |
| [8] |
González Santander R., Plasencia Arriba M. A., Martinez Cuadrado G., Lopez Alonso A., González-Santander Martinez M., Martinez Alonso F. J., Monteagudo M., Toledo Lobo M. V. Intracellular biogenesis of collagen fibrils in «activated fibroblasts» of tendo Ahillis. An ultrastructural study in the New Zealand rabbit // J. Bone Joint. Surg. Br. 1999. Vol. 81, № 3. P. 522-530. |
| [9] |
Kato S., Saito M., Funasaki H., Marumo K. Distinctive collagen maturation process in fibroblasts derived from rabbit anterior cruciate ligament, medial collateral ligament, and patellar tendon in vitro // Knee Surg. Sports Traumatol. Arthrosc. 2015. Vol. 23, № 5. P. 1384-1392. |
| [10] |
Tracy L. E., Minasian R. A., Caterson E. J. Extracellular matrix and dermal fibroblast function in the healing wound // Adv. Wound Care (New Rochelle). 2016. Vol. 5, № 3. P. 119-136. |
| [11] |
Leblond C. P. Synthesis and secretion of collagen by cells of connective tissue, bone, and dentin // Anat. Rec. 1989. Vol. 224, № 2. P. 123-138. |
| [12] |
Lee H., Sodek K. L., Hwang Q., Brown T.J, Ringuette M., Sodek J. Phagocytosis of collagen by fibroblasts and invasive cancer cells is mediated by MT1-MMP // Biochem. Soc. Trans. 2007. Vol. 35. Pt. 4. P. 704-706. |
| [13] |
Michna H. Intracellular collagen fibrils: evidence of an intracellular source from experiments with tendon fibroblasts and fibroblastic tumor cells // J. Anat. 1988. Vol. 158. P. 1-12. |
| [14] |
Bayer M. L., Yeung C.-Y. C., Kadler K. E., Qvortrup K., Baar K., Svensson R. B., Magnusson S. P., Krogsgaard M., Koch M., Kjaer M. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension // Biomaterials. 2010. Vol. 31, № 18. P. 4889-4897. |
| [15] |
Perche O., Hayashi M., Hayashi K., Birk D., Trelstad R. L., Sandoz D. Origin of type I collagen localized within oviduct epithelium of quail hyperstimulated by progesterone // J. Cell Sci. 1990. Vol. 95. P. 85-95. |
| [16] |
Smith S. M., Thomas C. E., Birk D. E. Pericellular proteins of the developing mouse tendon: a proteomic analysis // Connect Tissue Res. 2012. Vol. 53, № 1. P. 2-13. |
| [17] |
Hosoyamada Y., Kurinara H., Sakai T. Ultrastructural localisation and size distribution of collagen fibrils in Glisson’s sheath of rat liver: implications for mechanical environment and possible producing cells // J. Anat. 2000. Vol. 196. Pt. 3. P. 327-340. |
Ivanova V.F., Kostyukevich S.V.
/
| 〈 |
|
〉 |