AGE-RELATED CHANGES IN INTRAMURAL GANGLIONIC NEURONS OF THE LARGE INTESTINE EXPRESSING CALBINDIN AND CALRETININ

A. F. Budnik , P. M. Maslyukov , A. D. Nozdrachev

Morphology ›› 2019, Vol. 156 ›› Issue (5) : 59 -64.

PDF
Morphology ›› 2019, Vol. 156 ›› Issue (5) : 59 -64. DOI: 10.17816/morph.101863
Articles
research-article

AGE-RELATED CHANGES IN INTRAMURAL GANGLIONIC NEURONS OF THE LARGE INTESTINE EXPRESSING CALBINDIN AND CALRETININ

Author information +
History +
PDF

Abstract

Objective - to identify the localization, percentage and morphometric characteristics of calbindin (CB) and calretinin (CR)-immunoreactive (IR) neurons in the methasympathetic intramural ganglia of the myenteric (MP) and submucous plexus (SP) of the large intestine of rats of different age groups. Material and methods. Thick sections of the transverse colon of Wistar rats aged 1, 10, 20, 30, 60 days and 2 years were studied by immunohistochemical and morphometric methods. Results. CB-IR and CR-IR neurons were demonstrated in rats of all studied age groups. In the MP, the percentage of CB-IR and CR-IR neurons on the 10th day of life was significantly greater than after birth, and did not change in the older groups. In the SP of newborn rats, CB was not detected (it was demonstrated only from the 10th day), and CR was detected in 72,0±2,52 % of neurons. A significantly higher percentage of CB-IR and CR-IR neurons was detected in 2-month-old and older rats. The average cross-sectional area of CB-IR and CR-IR cells was significantly larger than the average cross-sectional area of the immunonegative neurons in all age groups. Conclusions. In early postnatal ontogenesis, there was an increase in the proportion of CB-IR and CR-IR neurons in the intramural ganglia of the intestine.

Keywords

colon / enteric intramural ganglia / calbindin / calretinin

Cite this article

Download citation ▾
A. F. Budnik, P. M. Maslyukov, A. D. Nozdrachev. AGE-RELATED CHANGES IN INTRAMURAL GANGLIONIC NEURONS OF THE LARGE INTESTINE EXPRESSING CALBINDIN AND CALRETININ. Morphology, 2019, 156(5): 59-64 DOI:10.17816/morph.101863

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Гилерович Е. Г., Федорова Е. А., Григорьев И. П., Коржевский Д. Э. Морфологические основы реорганизации коры мозжечка крыс при старении // Журн. эволюц. биохим. и физиол. 2015. Т. 51, № 5. С. 370-376.

[2]

Маслюков П. М., Будник А. Ф., Ноздрачев А. Д. Нейрохимические особенности узлов метасимпатической системы в онтогенезе // Успехи геронтол. 2017. Т. 30, № 3. С. 347-355.

[3]

Маслюков П. М., Ноздрачёв А. Д., Емануйлов А. И. Возрастные особенности экспрессии кальций-связывающих белков в нейронах ганглиев автономной нервной системы // Успехи геронтол. 2016. Т. 29, № 2. С. 247-253.

[4]

Чумасов Е. И., Петрова Е. С., Коржевский Д. Э. Cтруктурная организация и взаимосвязь интрапанкреатических ганглиев с межмышечным нервным сплетением двенадцатиперстной кишки на ранней стадии постнатального онтогенеза крысы // Морфология. 2016. Т. 150, вып. 5. С. 24-30.

[5]

Ahn J. H., Hong S., Park J. H., Kim I. H., Cho J. H., Lee T. K., Lee J. C., Chen B. H., Shin B. N., Bae E. J., Jeon Y. H., Kim Y. M., Won M. H., Choi S. Y. Immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the somatosensory cortex of rodents during normal aging // Mol. Med. Rep. 2017. Vol. 16, № 5. P. 7191-7198.

[6]

Franconville R., Revet G., Astorga G., Schwaller B., Llano I. Somatic calcium level reports integrated spiking activity of cerebellar interneurons in vitro and in vivo // J. Neurophysiol. 2011. Vol. 106, № 4. P. 1793-1805.

[7]

Girard F., Venail J., Schwaller B., Celio M. R. The EF-hand Ca(2+)-binding protein super-family: a genome-wide analysis of gene expression patterns in the adult mouse brain // Neuroscience. 2015. Vol. 294. P. 116-155.

[8]

Heizmann C. W. Ca2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets // Methods Mol. Biol. 2019. Vol. 1929. P. 157-186.

[9]

Masliukov P. M., Moiseev K., Budnik A. F., Nozdrachev A. D., Timmermans J.-P. Development of calbindin- and calretininimmunopositive neurons in the enteric ganglia of rats // Cell Mol. Neurobiol. 2017. Vol. 37, № 7. P. 1257-1267.

[10]

Misawa R., Girotti P.A., Mizuno M. S., Liberti E. A., Furness J.B, Castelucci P. Effects of protein deprivation and re-feeding on P2X2 receptors in enteric neurons // World J. Gastroenterol. 2010. Vol. 16, № 29. P. 3651-3663.

[11]

Sang Q., Young H. M. The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse // Anat. Rec. 1998. Vol. 251, № 2. P. 185-199.

[12]

Segal M., Korkotian E. Roles of Calcium Stores and Store-Operated Channels in Plasticity of Dendritic Spines // Neuroscientist. 2016. Vol. 22, № 5. P. 477-485.

[13]

Schwaller B. The regulation of a cell’s Ca(2+) signaling toolkit: the Ca (2+) homeostasome // Adv. Exp. Med. Biol. 2012. Vol. 740. P. 1-25.

[14]

Sun S., Li F., Gao X., Zhu Y., Chen J., Zhu X., Yuan H., Gao D. Calbindin-D28K inhibits apoptosis in dopaminergic neurons by activation of the PI3-kinase-Akt signaling pathway // Neuro science. 2011. Vol. 199. P. 359-367.

[15]

Verdaguer E., Brox S., Petrov D., Olloquequi J., Romero R., de Lemos M. L., Camins A., Auladell C. Vulnerability of calbindin, calretinin and parvalbumin in a transgenic/knock-in APPswe/ PS1dE9 mouse model of Alzheimer disease together with disruption of hippocampal neurogenesis // Exp. Gerontol. 2015. Vol. 69. P. 176-188.

RIGHTS & PERMISSIONS

Budnik A.F., Maslyukov P.M., Nozdrachev A.D.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/