SPATIAL ORGANIZATION OF THE DORSAL RAPHE NUCLEUS PROJECTIONS TO FUNCTIONALLY DIFFERENT REGIONS OF THE BASAL NUCLEI IN DOG BRAIN
A. I. Gorbachevskaya
Morphology ›› 2019, Vol. 156 ›› Issue (4) : 7 -13.
SPATIAL ORGANIZATION OF THE DORSAL RAPHE NUCLEUS PROJECTIONS TO FUNCTIONALLY DIFFERENT REGIONS OF THE BASAL NUCLEI IN DOG BRAIN
Objective - to study the projections from the individual subregions of the dorsal raphe nucleus (DRN) to the functionally different regions of the basal nuclei of dog forebrain. Material and methods. Using the method based on the retrograde axonal transport of the horseradish peroxidase (HRP), which was injected in the functionally different regions of the basal nuclei of the 43 outbred dogs, the spatial organization of the projections to these structures from different parts of the DRN was studied. Forty-eight hours after cerebral perfusion fixation, HRP was histochemically revealed in the DRN neurons on the serial coronal brain sections using tetramethylbenzidine. The number of the labeled neurons was counted under a microscope in each of studied parts, which were identified on the serial coronal toluidine- stained sections of celloidin-embedded brain. Results. The spatial organization of the projections to the functionally different segments of the basal nuclei from the individual functionally different parts of the DRN was studied in dogs by the method based on the retrograde axonal transport of HRP. The peculiarities of the topography of projection connections were revealed, indicating the possibility of segregated conduction of information from the dorsal part of the DRN, which has connections with the limbic structures, to the limbic subdomains of striatum. Observed in the entopeduncular nucleus, ventral pallidum, deep mesencephalic nucleus and medial portion of pedunculopontine nucleus overlapping of the terminal fields of neurons from all parts of DRN, receiving and transmitting functionally different information to the basal nuclei and associated structures, indicate its possible integration in these nuclei. In fact, the structural basis of information processing in the morpho-functional system of basal nuclei was analyzed. Conclusions. The presented data on the topographic organization of the projections directed to the functionally different regions of basal nuclei from various parts of DRN indicate the possibility of the influence of different parts of DRN on a wide range of behavioral and physiological processes in which basal nuclei are involved. The revealed system of connections participates in carrying the information, its integration in the morpho-functional system of basal nuclei, and serves as a structural basis for understanding of the mechanisms of their functioning in normal and pathological conditions.
basal nuclei / deep mesencephalic nucleus / zona incerta / pedunculopontine nucleus / striatum
| [1] |
Горбачевская А. И. Структурные аспекты участия ядер ствола мозга в обработке функционально различных информационных потоков, проходящих через базальные ганглии // Росс. физиол. журн. им И. М. Сеченова. 2016. Т. 102, № 9. С. 1051-1065. |
| [2] |
Горбачевская А. И., Чивилёва О. Г. Структурная организация неопределённой зоны промежуточного мозга собаки // Морфология. 2007. Т. 131, № 3. С. 16-21. |
| [3] |
Горбачевская А. И., Чивилёва О. Г. Морфологический анализ путей проведения информации в базальных ганглиях млекопитающих // Успехи физиол. наук. 2003. Т. 34, № 2. С. 46-63. |
| [4] |
Aquirre J. A., Covenas R., Burgos K., CastroT. Incertal projections from the brainstem and cerebellum: A horseradish peroxidase study in the cat // J. Hirnforsch. 1989. Vol. 30, № 4. P. 449-455. |
| [5] |
Caliso L. H., Akanwa A., Ma X., Pan Y., Lemos J. C., Craige C., Heemstra L. A., Beck S. G. Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence // Neuropharmacology. 2011. Vol. 61, № 3. P. 524-543. |
| [6] |
Crawford L. K., Craige C.,P., Beck S. G. Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: a mechanism for selective activation in stress circuits // J. Neurophysiol. 2010. Vol. 103, № 5. P. 2652-2663. |
| [7] |
Di Matteo V., Pierucci M., Esposito E., Crescimanno G., Benigno A., Di Giovanni G. Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson’s disease and other motor disorders // Prog. Brain Res. 2008. Vol. 172. P. 423-463. |
| [8] |
Dua-Sharma S., Sharma K. N., Jacobs H. L. The canine brain in stereotaxic coordinates. Cambridge, Massachusetts, London, England. MIT Press, 1970. |
| [9] |
Heller A. S. Cortical-subcortical interactions in depression: from animal models to human psychopatology // Front. Syst. Neurosci. 2016. Vol. 10. P. 1-10. |
| [10] |
Jasinska A. J., Lowry C. A., Burmeister M. Serotonin transporter gene, stress and raphe-raphe interactions: a molecular mechanism of depression // Trends Neurosci. 2012. Vol. 35, № 7. P. 395-402. |
| [11] |
Jbabdi S., Sotiropoulos S. N., Behrens T. E. The topographic connectome // Curr. Opin. Neurobiol. 2013. Vol. 23, № 2. P. 207- 215. |
| [12] |
Kumbhare D., Holloway K. L., Baron M. S. Parkinsonism and dystonia are differentially induced by modulation of different territories in the basal ganglia // Neuroscience. 2017. Vol. 353. P. 42-57. |
| [13] |
Lavoie B., Parent A. Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey // J. Comp. Neurol. 1990. Vol. 299, № 1. P. 1-16. |
| [14] |
Lee H. S., Eum Y. J., Jo S. M., Waterhouse B. D. Projection patterns from the amygdaloid nuclear complex to subdivisions of the dorsal raphe nucleus in the rat // Brain Res. 2007. Vol. 1143, № 1. P. 116-125. |
| [15] |
Mesulam M. M. Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents // J. Histochem. Cytochem. 1978. Vol. 26, № 2. 106-117. |
| [16] |
Parent A. Comparative Neurobiology of the basal ganglia. A. Willy-Interscience publication. N-Y: John Willey and Sons, 1986. |
| [17] |
Parent M., Wallman M.-J., Cagnon D., Parent A. Serotonin innervation of basal ganglia in monkeys and humans // J. Chem. Neuroanat. 2011. Vol. 41, № 4. P. 256-265. |
| [18] |
Plaha P., Khan S., Javed S., Gill S. S. Caudal zona incerta as an alternative target for the treatment of tremor with deep brain stimulation // Eur. Neurol. Review. 2010. Vol, 4, № 1. P. 91-96. |
| [19] |
Saniari M. H., Zare-Shahabadi A., Rahmani F., Rezaei N. Neurotransmission systems in Parkinson’s disease // Rev. Neurosci. 2017. Vol. 28, № 5. P. 509-536. |
| [20] |
Takakusaki K. Forebrain control of locomotor behaviors // Brain Res. Rev. 2008. Vol. 57, № 1. P. 192-198. |
| [21] |
Vasudeva R. K., Lin R. C.S., Simpson K. L., Waterhouse B. D. Functional organization of the dorsal raphe efferent system with special consideration of nitrergic cell groups // J. Chem. Neuroanat. 2011. Vol. 41, № 4. P. 281-293. |
| [22] |
Vertes R. P., Kostsis B. Projections of the dorsal raphe nucleus to the brainstem PHA-L analysis in the rat // J. Comp. Neurol. 1994. Vol. 340, № 1. P. 11-26. |
| [23] |
Wilson D. I., MacLaren A. A., Winn P. On the relationships between the pedunculopontine tegmental nucleus, corticostriatal architecture, and the medial reticular formation // The basal ganglia IX, Advances in Behavioral Biology, eds: Groenewegen H. J., Voorn P., Berendse H. W. 2009. Vol. 58. P. 143-157. |
| [24] |
Woolf N. J. Global and serial neurons form a hierarchically arranged interface proposed to underlie memory and cognition // Neuroscience. 1996. Vol. 74, № 3. P. 625-651. |
Gorbachevskaya A.I.
/
| 〈 |
|
〉 |