AGE-RELATED CHARACTERISTICS OF OLFACTORY BULB ASTROCYTES REACTION TO THE ADMINISTRATION OF CAPSAICIN
D. A. Pozhilov , A. V. Moskalenko , K. K. Pshenisnov
Morphology ›› 2019, Vol. 156 ›› Issue (5) : 32 -38.
AGE-RELATED CHARACTERISTICS OF OLFACTORY BULB ASTROCYTES REACTION TO THE ADMINISTRATION OF CAPSAICIN
Objective - to compare the reaction of rat olfactory bulb astrocytes to capsaicin administration at different stages of postnatal ontogenesis. Materials and methods. On serial paraffin sections of the olfactory bulbs of 70 male Wistar rats aged 30 to 240 days, astrocytes and mature neurons were detected using GFAP and NeuN markers. NeuN was demonstrated in the perinuclear cytoplasm and nucleus of mature neurons, glial fibrillary acidic protein (GFAP) of astrocytes - in the cytoplasm and astrocyte processes. The numerical density of mature neurons and astrocytes (pcs/ mm2), as well as the average area of astrocyte processes (μm2) were assessed in norm and after neurotoxic exposure to subcutaneous administration of capsaicin in rats of different age groups. Results. Postnatal changes in the studied microstructural parameters of the olfactory bulb in rats were normally observed from 30 to 180 days. In adulthood, stabilization of both the numerical density of neurons and astrocytes, and the average area of the processes of astrocytes were observed. It was found that neurotoxic exposure caused neuronal death and an increase in the numerical density of astrocytes in different layers of olfactory bulb, caused by a response to damage. More profound microstructural changes in the primary and secondary neurogenic niches were noted. Conclusions. Neuronal death was maximal at 15-30 days and reactive gliosis - at 30 days after neurotoxin administration. In infantile rats the intensity of gliosis decreased by the 60th day of the experiment, in adulthood gliosis did not tend to decrease.
rat olfactory bulb / neurons / astrocytes / capsaicin / reactive gliosis
| [1] |
Агаджанова Л. С., Румянцева Т. А. Влияние химической деафферентации на возрастные преобразования морфометрических характеристик нейроцитов ядер блуждающего нерва у белой крысы // Вопросы морфологии и патологии. М.: Изд-во РГМУ, 2007. С. 75-82. |
| [2] |
Гомазков О. А. Нейрогенез как адаптивная функция мозга. М.: НИИ биомедицинской химии, 2014. 85 с. |
| [3] |
Гусельникова В. В., Коржевский Д. Э. NeuN-нейрональный ядерный антиген и маркер дифференцировки нервных клеток // Acta Naturae. 2015. Т. 7, вып. 2 (25). С. 46-51. |
| [4] |
Западнюк И. П., Западнюк В. И., Захария Е. А., Западнюк Б. В. Лабораторные животные. Разведение, содержание, использование в эксперименте. Киев: Вища школа: 1983. 383 c. |
| [5] |
Золотарев В. А., Ноздрачев А. Д. Капсаицин-чувствительные афференты блуждающего нерва // Росс. физиол. журн. им. И. М. Сеченова. 2001. Т. 87, вып. 2. С. 182- 204. |
| [6] |
Коржевский Д. Э., Отеллин В. А. Иммуноцитохимическое выявление астроцитов в срезах головного мозга в сочетании с окраской по Нисслю // Морфология. 2004. Т. 125, вып. 3. С. 100-102. |
| [7] |
Румянцева Т. А., Пожилов Д. А., Варенцов В. Е., Москаленко А. В. Реакция астроцитов обонятельной луковицы крысы на введение капсаицина в инфантильном возрасте // Вестник новых медицинских технологий. Электронное издание. 2018. № 5. С. 239-244. |
| [8] |
Румянцева Т. А., Пожилов Д. А., Варенцов В. Е., Москаленко А. В. Возрастные особенности экспрессии GFAP и DCX в обонятельных луковицах и ростральном миграционном потоке у крыс // Журнал анатомии и гистопатологии. 2018. Т. 7, № 2. С. 69-75.doi:10.18499/2225-7357-2018-7-269-75 |
| [9] |
Филимонов В. И., Невзорова М. Н. Влияние химической деафферентации на морфометрические характеристики сосудов обонятельной луковицы белой крысы // Морфология. 2004. Т. 126, вып. 4. С. 128-129. |
| [10] |
Bushong E. A. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development // Int. J. Dev. Neurosci. 2004. Vol. 22. P. 73-86. |
| [11] |
Dong H. W., Davis J. C., Ding S., Nai Q., Zhou F. M., Ennis M. Expression of transient receptor potential (TRP) channel mRNAs in the mouse olfactory bulb // Neurosci Lett. 2012. Vol. 524, № 1. P. 49-54. doi: 10.1016/j.neulet.2012.07.013. Epub 2012 Jul 20.PMID: 22820212 |
| [12] |
Gallaher Z. R., Johnston S. T., Czaja K. Neural proliferation in the dorsal root ganglia of the adult rat following capsaicin-induced neuronal death // J. Comp. Neurol. 2014. Vol. 522, № 14. P. 3295-307. doi: 10.1002/cne.23598 |
| [13] |
García-Marqués J., López-Mascaraque L. Clonal Mapping of Astrocytes in the Olfactory Bulb and Rostral Migratory Stream // Cerebral. Cortex. 2016. Vol. 27, № 3. P. 1-15. |
| [14] |
Guide for the Care and Use of Laboratory Animals: Eighth Edition// The National Academies Press. Washington: DC, 2011. 248. |
| [15] |
Lucassen P. J. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Impli cations for depression and antidepressant action // Eur. Neuropsychopharmacol. 2010. Vol. 20, № 1. P. 1-17. |
| [16] |
Pekny M., Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits // Physiol. Rev. 2014. Vol. 94, № 4. P. 1077-1098. |
| [17] |
Ritter S., Dinh T. T. Capsaicin-induced neuronal degeneration in the brain and retina of preweanling rats // J. Comp. Neurol. 1990. Vol. 296, № 3. P. 447-461. |
| [18] |
Ruihe Lin, Lorraine Iacovitti. Classic and novel stem cell niches in brain homeostasis and repair // Brain Res. 2015. Vol. 1628. P. 327-342. |
Pozhilov D.A., Moskalenko A.V., Pshenisnov K.K.
/
| 〈 |
|
〉 |