THE PROLIFERATION ACTIVITY IN RAT OLFACTORY BULB IN A NEURODEGENERATION MODEL
V. E. Varentsov , T. A. Rumyantseva , E. V. Kiseleva , T. S. Myasishcheva
Morphology ›› 2019, Vol. 156 ›› Issue (5) : 26 -31.
THE PROLIFERATION ACTIVITY IN RAT OLFACTORY BULB IN A NEURODEGENERATION MODEL
Objective - to evaluate the effect of neuronal death in the neonatal period on the proliferative activity in the rat olfactory bulb (OB). Material and methods. The study was conducted on 48 male Wistar 1 to 90 days of age. The object of study was the right OB. Neurodegeneration was induced by single subcutaneous injection of 10 % capsaicin solution to the rats on the first day of life. Ki-67 was detected using monoclonal rabbit antibodies (ab16667, UK, 1:100). Microphotographs of standard sections were used to determine the numerical density of positive nuclei (units/mm2). Results. The activity of cell proliferation in OB depended on the age and layer. In response to capsaicin administration, the proliferative activity increased during the first week. The intensity of the activation had topological characteristic - the maximum and earliest effect was observed in the center of the OB and then it spreaded to the outer layers. At the beginning of the observation, the main source of proliferating cells was the germinative zone of the OB, in the subsequent periods - the migrating neuronal precursors of the rostral migratory stream. Conclusion. Diffuse death of a part of neurons caused by the capsaicin administration leads to the development of a compensatory process manifested by the activation of the canonical stem niches and the germinative zone of the OB, as well as the prolongation of the proliferative activity of radially migrating cells to the 90th day of life in rats.
Ki-67 / olfactory bulbs / neurogenesis / Ki-67 / ontogenesis / capsaicin
| [1] |
Невзорова М. Н., Тятенкова Н. Н., Комарова И. П. Развитие клеточных слоев обонятельных луковиц белой крысы в постнатальном онтогенезе // Морфология. 2012. Т. 141, вып. 3. С. 112. |
| [2] |
Румянцева Т. А., Варенцов В. Е., Пшениснов К. К., Пожилов Д. А. Распределение DCX и Ki-67 позитивных клеток в ростральном миграционном потоке у крысят // Морфология. 2018. Т. 153,№ 3. С. 234-235. |
| [3] |
Тимошенко Т. В., Полетаева И. И., Павлова Г. В., Ревищин А. В. Влияние неонатального введения нейропептида семакса на пролиферативную активность клеток в зубчатой фасции гиппокампа крыс двух генотипов // ДАН. 2009. Т. 424, № 6. С. 846-848. |
| [4] |
Alvarez-Buylla A., Lim D. A. For the Long Run: Maintaining germinal niches in the adult brain //J. Neuron. 2004. Vol. 41, № 5. P. 683-686. |
| [5] |
Brzozowski T., Kontirek S. J., Pytko-Polonczyk J., Warzecha Z. Gastric adaptation to stress: role of sensory nerves, salivary glands and adrenal glands // Scand. J. Gastroenterol. 1995. Vol. 30, № 1. P. 6-16. |
| [6] |
Couillard-Despres S., Wuertinger C., Kandasamy M., Caioni M., Stadler K., Aigner R., Bogdahn U., Aigner L. Ageing abolishes the effects of fluoxetine on neurogenesis // Mol. Psychiatry. 2009. Vol. 14, № 9. P. 856-864. doi: 10.1038/mp.2008.147 |
| [7] |
Yu Y., He J., Zhang Y., Luo H., Zhu S., Yang Y., Zhao T., Wu J., Huang Y., Kong J., Tan Q., Li X. M. Increased hippocampal neuro genesis in the progressive stage of Alzheimer’s disease phenotype in an APP/PS1 double transgenic mouse model // J. Hippocampus. 2009. Vol. 19, № 12. P. 1247-1253. doi: 10.1002/ hipo.20587 |
| [8] |
Yu T. S., Zhang G., Liebl D. J., Kernie S. G. Traumatic brain injury-induced hippocampal neurogenesis requires activation of early nestin-expressing progenitors // J. Neurosci. 2008. Vol. 28, № 48. P. 12901-12912. doi: 10.1523/JNEUROSCI.4629-08.2008 |
| [9] |
Lu D., Qu C., Goussev A., Jiang H., Lu C., Schallert T., Mahmood A., Chen J., Li Y., Chopp M. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury // J. Neurotrauma. 2007. Vol. 24, № 7. P. 1132-1146. doi: 10.1089/neu.2007.0288 |
| [10] |
Nkomozepi P., Mazengenya P., Ihunwo A. O. Age-related changes in Ki-67 and DCX expression in the BALB/c mouse (Mus Musculus) brain // Int. J. Dev. Neurosci. 2019. Vol. 72. P. 36-47. doi: 10.1016/j.ijdevneu.2018.11.005 |
| [11] |
O’Keeffe G. C., Tyers P., Aarsland D., Dalley J. W., Barker R. A., Caldwell M. A. Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF // Proc. Natl. Acad. Sci. USA. 2009. Vol. 106, № 21. P. 8754-8759. doi: 10.1073/pnas.0803955106 |
| [12] |
Santicioli P., Del-Bianco E., Geppetti P., Maggy C. A. Release of calcitonin gene-related peptide-like immunoreactivity from rat isolated soleus muscle by low PH, capsaicin and potassium // Neurosci. Lett. 1992. Vol. 143, № 1-2. P. 19-22. |
| [13] |
Sun X., Zhang Q. W., Xu M., Guo J. J., Shen S. W., Wang Y. Q., Sun F. Y. New striatal neurons form projections to substantia nigra in adult rat brain after stroke // J. Neurobiol. Dis. 2012. Vol. 45. Iss. 1. P. 601-609. doi: 10.1016/j.nbd.2011.09.018 |
| [14] |
Zhang C., Chopp M., Cui Y., Wang L., Zhang R., Zhang L., Lu M., Szalad A., Doppler E., Hitzl M., Zhang Z. G. Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke // J. Neurosci Res. 2010. Vol. 88, № 15. P. 3275-3281. doi: 10.1002/jnr.22495 |
Varentsov V.E., Rumyantseva T.A., Kiseleva E.V., Myasishcheva T.S.
/
| 〈 |
|
〉 |