MORPHOLOGICAL PATTERN AND MORPHOMETRIC STUDY OF THE CEREBRAL CORTEX OF RATS WITH DIFFERENT TYPOLOGICAL CHARACTERISTICS OF HIGHER NERVOUS ACTIVITY

V. V. Krishtop , D. A. Pozhilov

Morphology ›› 2019, Vol. 156 ›› Issue (5) : 17 -21.

PDF
Morphology ›› 2019, Vol. 156 ›› Issue (5) : 17 -21. DOI: 10.17816/morph.101829
Articles
research-article

MORPHOLOGICAL PATTERN AND MORPHOMETRIC STUDY OF THE CEREBRAL CORTEX OF RATS WITH DIFFERENT TYPOLOGICAL CHARACTERISTICS OF HIGHER NERVOUS ACTIVITY

Author information +
History +
PDF

Abstract

Objective - to study the histological and immunohistochemical characteristics of the cerebral cortex in animals with different stress tolerance and level of cognitive abilities. Material and methods. The morphology of the cortex of the brain precentral gyrus was studied in 24 rats with different levels of stress tolerance, verified in open field test, and cognitive abilities, verified in the Morris water maze. The sections were stained according to Nissl method and with antibodies against GFAP. Results. In animals with low stress tolerance, a significant increase in the number of neurons with two nucleoli was found; large nuclei and the area of cytoplasm, as well as a larger number of neurons demonstrating irreversible changes were also detected. The average distance between the perikaryon of neurons and the satellite cells in this subgroup was also larger, and the number of perivascular gliocytes was smaller. In animals with a low level of cognitive abilities, the features revealed by Nissl staining were similar to those of animals with high stress tolerance but less pronounced. Animals with high stress tolerance were characterized by a significantly smaller distribution area of the processes and a smaller number of GFAP-positive cells per 1 mm2 of the section. Animals with high cognitive abilities typically had a significantly greater number of GFAP-positive cell bodies per 1 mm2 of section and a significantly smaller area occupied by processes. Conclusions. The level of the animal stress tolerance correlates with the nature of neuro-glial relationship; high level of stress tolerance and high cognitive abilities are associated with a smaller number of neurons with two nucleoli, a great number of dead satellite cells, low values of the average distribution of astrocyte processes. Other parameters associated with high stress tolerance and high cognitive abilities are of mutually exclusive or insignificant character.

Keywords

brain / stress tolerance / cognitive abilities / cerebral hypoperfusion / rats

Cite this article

Download citation ▾
V. V. Krishtop, D. A. Pozhilov. MORPHOLOGICAL PATTERN AND MORPHOMETRIC STUDY OF THE CEREBRAL CORTEX OF RATS WITH DIFFERENT TYPOLOGICAL CHARACTERISTICS OF HIGHER NERVOUS ACTIVITY. Morphology, 2019, 156(5): 17-21 DOI:10.17816/morph.101829

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Антипенко Е. А., Густов А. В. Индивидуальная стрессоустойчивость и прогноз заболевания при хронической ишемии головного мозга // Медицинский альманах. 2014. № 3 (33). C. 36-38.

[2]

Боголепова И. Н., Малофеева Л. И., Агапов П. А., Малофеева И. Г. Морфометрические исследования цитоархитектоники префронтальной коры мозга женщин // Фундаментальные исследования. 2015. № 2-25. С. 5583-5587.

[3]

Васильев Ю. Г. Морфология нейроглио-сосудистых отношений млекопитающих (сравнительное и онтогенетическое исследование): Автореф. дис. … д-ра мед. наук. Саранск, 2001. 28 с.

[4]

Дизрегуляторная патология: Руководство для врачей и биологов / Под ред. Г. Н. Крыжановского. М.: Медицина, 2002. C. 260-270.

[5]

Дробленков А. В., Наумов Н. В., Монид М. В., Валькович Э. И., Шабанов П. Д. Реактивные изменения клеточных элементов головного мозга крыс при различных условиях циркуляторной гипоксии // Морфология. 2013. Т. 143, вып. 3. С. 14-21.

[6]

Ивлиева А. Л., Петрицкая Е. Н., Рогаткин Д. А., Демин В. А. Методические особенности применения водного лабиринта Морриса для оценки когнитивных функций у животных // Российский физиологический журнал им. И. М. Сеченова. 2016. Т. 102, № 1. С. 3-17.

[7]

Криштоп В. В., Пахрова О. А., Румянцева Т. А. Развитие перманентной гипоксии головного мозга у крыс в зависимости от индивидуальных особенностей высшей нервной деятельности и пола // Медицинский вестник Северного Кавказа. 2018. Т. 13, № 4. С. 654-659.

[8]

Arandjelovic S., Ravichandran K. S. Phagocytosis of apoptotic cells in homeostasis // NatImmunol. 2015 Vol. 16, № 9. P. 907-197. doi: 10.1038/ni.3253

[9]

Bazargani N., Attwell D. Astrocyte calcium signaling: the third wave // Nat. Neurosci. 2016. Vol. 19, № 2. P. 182-189. doi: 10.1038/nn.4201

[10]

Beaver K. M., Schwartz J. A., Connolly E. J., Al-Ghamdi M. S., Kobeisy A. N., Barnes J. C., Boutwell B. B. Intelligence and early life mortality: Findings from a longitudinal sample of youth // Death. Stud. 2016. Vol. 40, № 5. P. 298-304. doi: 10.1080/07481187.2015.1137994

[11]

Chönpflug W., Mündelein H. Operation-correlated heart-rate responses // Psychological Res. 1983. Vol. 45, № 2. P. 177-186.

[12]

Der G., Deary I. J. Reaction times match IQ for major causes of mortality: Evidence from a population based prospective cohort study // Intelligence. 2018. Vol. 69. P. 134-145. doi: 10.1016/j. intell.2018.05.005

[13]

McKenna M. C. The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain // J. Neurosci. Res. 2007 Vol. 85, № 15. P. 3347-3358. doi: 10.1002/jnr.21444

[14]

SörbergWallin A., Allebeck P., Gustafsson J., Hemmingsson T. Childhood IQ and mortality during 53 years’ follow-up of Swedish men and women // J. Epidemiol. Community Health. 2018. Vol. 72, № 10. P. 926-932. doi: 10.1136/jech-2018-210675

RIGHTS & PERMISSIONS

Krishtop V.V., Pozhilov D.A.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/