Comparative analysis of morphological changes in renal tissue under the influence of light desynchronosis

Olga V. Zlobina , Alexey N. Ivanov , Taisiya V. Milashevskaya , Valeria Yu. Seryogina , Irina O. Bugaeva

Morphology ›› 2021, Vol. 159 ›› Issue (2) : 63 -70.

PDF
Morphology ›› 2021, Vol. 159 ›› Issue (2) : 63 -70. DOI: 10.17816/1026-3543-2021-159-2-63-70
Original Study Articles
research-article

Comparative analysis of morphological changes in renal tissue under the influence of light desynchronosis

Author information +
History +
PDF

Abstract

AIM: To compare morphological changes that occur in renal tissue, as a result of exposure to various models of light desynchronosis.

MATERIAL AND METHODS: This study was conducted on 48 white rats. Three experimental groups were exposed to light for 21 days. The LL (0:24) model was studied in the first group, while the LD 18:6 and 12:10 models were studied in the second and third groups, respectively. The control group was kept in natural conditions all through the experiment.

The animals were placed under anesthesia with a combination of Telazol (ZoetisInc, USA) and Xylanit (Nita-farm, Russia). Afterward, their right kidney was removed. The samples obtained were prepared according to the standard method. Statistical processing was performed using the package of applied statistical programs "STATISTICA 10" (StatSoft ®, USA).

RESULTS: Morphological disorders of the renal tissue were observed in the three experimental groups. In the first experimental group, there was a significant segmentation of the glomeruli, accompanied by dystrophic changes in the renal tubules. In the second experimental group, glomerular segmentation was more pronounced. In the renal tissue of animals of the third experimental group, the disorders were highly observable, and the sclerotized segment is noted. Changes in morphometric indicators were significant across all experimental groups.

CONCLUSION: Desynchronosis harms the renal tissue by causing changes in its morphology. The most significant disorders characterized by sclerosis were observed in the kidneys of animals in the third experimental group.

Keywords

morphofunctional state of kidneys / morphometric criteria / jet lag

Cite this article

Download citation ▾
Olga V. Zlobina, Alexey N. Ivanov, Taisiya V. Milashevskaya, Valeria Yu. Seryogina, Irina O. Bugaeva. Comparative analysis of morphological changes in renal tissue under the influence of light desynchronosis. Morphology, 2021, 159(2): 63-70 DOI:10.17816/1026-3543-2021-159-2-63-70

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bonny O, Vinciguerra M, ML, Gumz, et al. Molecular bases of circadian rhythmicity in renal physiology and pathology. Nephrol. Dial. Transplant. 2013;28(10):2421–31. doi: 10.1093/ndt/gft319

[2]

Bonny O., Vinciguerra M., ML, Gumz, et al. Molecular bases of circadian rhythmicity in renal physiology and pathology // Nephrol. Dial. Transplant. 2013. Vol. 28, № 10. Р. 2421–31. doi: 10.1093/ndt/gft319

[3]

Ageeva LI, Aleksandrova GA, Zaychenko NM, et al. Morbidity of the population in the main classes, groups and issues of the disease. Healthcare in Russia: Statistical collection. Moscow, 2017; p. 29. (In Russ).

[4]

Агеева Л.И., Александрова Г.А., Зайченко Н.М., и др. Заболеваемость населения по основным классам, группам и отдельным болезням. Здравоохранение в России: стат. сб. М., 2017; с. 29.

[5]

Rapoport SI, Chibisov SM, Blagonravov ML. Actual problems of chronobiology and chronomedicine. Clinical Medicine. 2013;9:71–73. (In Russ).

[6]

Рапопорт С.И., Чибисов С.М., Благонравов М.Л. Актуальные проблемы хронобиологии и хрономедицины // Клиническая медицина. 2013. № 9. С. 71–73.

[7]

Kaladze NN, Slobodyan EI, Govdalyuk AL. Epiphyseal hormone melatonin and chronic disease of kidneys (literature review and own research). Сhild Health. 2015;2(61):183–188.

[8]

Каладзе Н.Н., Слободян Е.И., Говдалюк А.Л. Эпифизарный гормон мелатонин и хроническая болезнь почек (обзор литературы и собственные исследования // Здоровье ребенка. 2015. № 2 (61). С. 183–188.

[9]

Zhurkin KI, Zlobina OV, Ivanov AN, et al. Changes in microcirculation and hemocoagulation in experimental light desynchronosis. Thrombosis, hemostasis and rheology. 2016;3(67):164–166.

[10]

Журкин К.И., Злобина О.В., Иванов А.Н., и др. Изменения микроциркуляции и гемокоагуляции при экспериментальном световом десинхронозе // Тромбоз, гемостаз и реология. 2016. № 3 (67). С. 164–166.

[11]

Nair V, Komorowsky CV, Weil EJ, et al. A molecular morphometric approach to diabetic kidney disease can link structure to function and outcome. Kidney Int. 2018;93(2):439–449. doi: 10.1016/j.kint.2017.08.013

[12]

Nair V., Komorowsky C.V., Weil E.J., et al. A molecular morphometric approach to diabetic kidney disease can link structure to function and outcome // Kidney Int. 2018. Vol. 93, № 2. Р. 439–449. doi: 10.1016/j.kint.2017.08.013

[13]

Arushanyan EB. Limitation of oxidative stress as the main reason for the universal protective properties of melatonin. Experimental and Clinical Pharmacology. 2012;75(4): 44–49. (In Russ).

[14]

Арушанян Э.Б. Ограничение окислительного стресса как основная причина универсальных защитных свойств мелатонина // Экспериментальная и клиническая фармакология. 2012. Т. 75, № 4. С. 44–49.

[15]

Mészáros K, Pruess L, Szabó AJ, et al. Development of the circadian clockwork in the kidney. Kidney International. 2014;86:915–922.

[16]

Mészáros K., Pruess L., Szabó A.J., et al. Development of the circadian clockwork in the kidney // Kidney International. 2014. № 86. Р. 915–922.

[17]

Krishnan HC, Lyons LC. Synchrony and desynchrony in circadian clocks: impacts on learning and memory. Learning and Memory. 2015;22(9):426–437. doi: 10.1101/lm.038877.115

[18]

Krishnan H.C., Lyons L.C. Synchrony and desynchrony in circadian clocks: impacts on learning and memory // Learning and Memory. 2015. Vol. 22. № 9. Р. 426–437. doi: 10.1101/lm.038877.115

[19]

Tokonami N, Mordasini D, Pradervand S, et al. Local renal circadian clocks control fluid-electrolyte homeostasis and BP. J. Am. Soc. Nephrol. 2014;25(7):1430–39. doi: 10.1681/ASN.2013060641

[20]

Tokonami N., Mordasini D., Pradervand S., et al. Local renal circadian clocks control fluid-electrolyte homeostasis and BP // J. Am. Soc. Nephrol. 2014. Vol. 25, № 7. Р. 1430–39. doi: 10.1681/ASN.2013060641

RIGHTS & PERMISSIONS

Zlobina O.V., Ivanov A.N., Milashevskaya T.V., Seryogina V.Y., Bugaeva I.O.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/