Neuro-microcirculatory interrelationships in patients with kyphoscoliosis associated with neurological deficits

Anton G. Nazarenko , Alexander I. Krupatkin , Alexander A. Kuleshov , Igor M. Militsa , Marchel S. Vetrile , Igor N. Lisyansky , Sergey N. Makarov

N.N. Priorov Journal of Traumatology and Orthopedics ›› 2024, Vol. 31 ›› Issue (3) : 295 -304.

PDF (1353KB)
N.N. Priorov Journal of Traumatology and Orthopedics ›› 2024, Vol. 31 ›› Issue (3) : 295 -304. DOI: 10.17816/vto630428
Original study articles
research-article

Neuro-microcirculatory interrelationships in patients with kyphoscoliosis associated with neurological deficits

Author information +
History +
PDF (1353KB)

Abstract

Background: The use of laser Doppler flowmetry with spectral wavelet analysis of blood flow fluctuations allows us to assess the functional state of thin unmyelinated nerve fibers and objectify the dynamics of recovery processes in patients with kyphoscoliotic spinal deformities associated with spinal cord compression.

AIM: To study the features of neuromicrocirculatory relationships in patients with kyphoscoliosis associated with neurological deficits before and after surgical treatment.

MATERIALS AND METHODS: 20 patients with spinal deformities associated with neurological deficits of varying severity were examined using the LDF method and operated on. Patients were examined before surgery, 1–2 weeks after surgery following regression of acute postoperative pain syndrome, 3–6 months, 6–12 months, and more than a year after surgery. The scope of the study included a general examination with a detailed assessment of the neurological status, radiation diagnostics (postural radiographs of the spine, computed tomography and magnetic resonance imaging of the spine with assessment of spinal canal stenosis). Patients with severe kyphoscoliotic deformities underwent CT myelography followed by the design of individual full-size 3D plastic models of the spine and myeloradicular structures. LDF with wavelet analysis was carried out at all periods of the survey. A perfusion study with determination of the average microcirculation was carried out at the level of the pad of the distal phalanx of the big toe using a two-channel LAKK-02 device with a semiconductor laser (sensing in the red Raman and infrared IR channels). The obtained LDF results were processed by spectral amplitude-frequency wavelet analysis to characterize microcirculation regulation factors in the ranges of sympathetic adrenergic regulation (0.02–0.046 Hz), sensory peptidergic influences (0.047–0.069 Hz), myogenic oscillations (0.07–0.145 Hz).

RESULTS: After surgery, the activity of trophotropic sensory peptidergic nerve fibers, the values of perfusion of the microcirculatory channel increased and was maintained starting from the early postoperative period. Ergotropic sympathetic adrenergic activity was significantly decreased in the period of 6-12 months after surgery. Maximum mobilization of trophotropic neurogenic mechanisms of sanogenesis was observed in the period of 6-12 months after surgery.

CONCLUSION: The obtained data indicate a significant participation of thin nerve fibers in the recovery processes after decompressive surgeries in the spinal canal zone and the creation of anatomical conditions for neurophysiological repair at the spinal cord level. The use of the LDF method with spectral wavelet analysis of blood flow fluctuations makes it possible to objectify the dynamics of thin unmyelinated nerve fibers and recovery processes in patients with kyphoscoliotic deformities of the spine associated with spinal cord compression.

Keywords

kyphosis / scoliosis / neurological deficit / laser doppler flowmetry / microcirculation / wavelet analysis

Cite this article

Download citation ▾
Anton G. Nazarenko, Alexander I. Krupatkin, Alexander A. Kuleshov, Igor M. Militsa, Marchel S. Vetrile, Igor N. Lisyansky, Sergey N. Makarov. Neuro-microcirculatory interrelationships in patients with kyphoscoliosis associated with neurological deficits. N.N. Priorov Journal of Traumatology and Orthopedics, 2024, 31(3): 295-304 DOI:10.17816/vto630428

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alsaleh K, Alduhaish A. A limited unilateral transpedicular approach for anterior decompression of the thoracolumbar spinal cord in elderly and high-risk patients. J Craniovertebr Junction Spine. 2019;10(2):88–93. doi: 10.4103/jcvjs.JCVJS_20_19

[2]

Alsaleh K., Alduhaish A. A limited unilateral transpedicular approach for anterior decompression of the thoracolumbar spinal cord in elderly and high-risk patients // J Craniovertebr Junction Spine. 2019. Vol. 10, № 2. Р. 88–93. doi: 10.4103/jcvjs.JCVJS_20_19

[3]

Krupatkin AI, Sidorov VV. Laser Doppler flowmetry. In: Beresten NF, Sandrikova VA, Fedorova SI, editors. Functional diagnostics: National guidelines. Moscow: GEOTAR-Media; 2019. Р. 488–499.

[4]

Крупаткин А.И., Сидоров В.В. Лазерная допплеровская флоуметрия. В кн.: Функциональная диагностика: национальное руководство / под ред. Н.Ф. Берестень, В.А. Сандрикова, С.И. Фёдоровой. Москва: ГЭОТАР-Медиа, 2019. С. 488–499.

[5]

Ippolitova EG, Damdinov BB, Koshkareva ZV, Verkhozina TK. Electroneuromyographic parameters in patients with spinal canal stenosis at the cervical level. Acta Biomedica Scientifica. 2020;5(5):68–72. doi: 10.29413/ABS.2020-5.5.9

[6]

Ипполитова Е.Г., Дамдинов Б.Б., Кошкарёва З.В., Верхозина Т.К. Электронейромиографические показатели у больных со стенозирующим процессом позвоночного канала на шейном уровне // Acta Biomedica Scientifica. 2020. Т. 5, № 5. C. 68–72. doi: 10.29413/ABS.2020-5.5.9

[7]

Adambaev ZI. Prognostic significance of electroneuromyography and evoked potentials in spinal canal stenosis. Medical news. 2019;(6):69–71. EDN: GPZGZQ

[8]

Адамбаев З.И. Прогностическая значимость показателей электронейромиографии и вызванных потенциалов при стенозе позвоночного канала // Медицинские новости. 2019. № 6 (297). C. 69–71. EDN: GPZGZQ

[9]

Mironov SP, Vetrile ST, Krupatkin AI, Shvets VV. Features of regional vegetative regulation and radicular microhemocirculation in patients with osteochondrosis of the spine before and after lumbar discectomy. N.N. Priorov Journal of Traumatology and Orthopedics. 2008;(2):15–19. EDN: JTGFYB

[10]

Миронов С.П., Ветрилэ С.Т., Крупаткин А.И., Швец В.В. Особенности регионарной вегетативной регуляции и корешковой микрогемоциркуляции у больных остеохондрозом позвоночника до и после поясничной дискэктомии // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2008. № 2. C. 15–19. EDN: JTGFYB

[11]

Srinivasan G, Sujatha N. Fractal Dimension Characterization of in-vivo Laser Doppler Flowmetry signals. Physics Procedia. 2011;19:49–54. doi: 10.1016/j.phpro.2011.06.124

[12]

Srinivasan G., Sujatha N. Fractal Dimension Characterization of in-vivo Laser Doppler Flowmetry signals // Physics Procedia. 2011. Vol. 19. P. 49–54. doi: 10.1016/j.phpro.2011.06.124

[13]

Gallagher MJ, Hogg FRA, Zoumprouli A, et al. Spinal Cord Blood Flow in Patients with Acute Spinal Cord Injuries. J Neurotrauma. 2019;36(6):919–929. doi: 10.1089/neu.2018.5961

[14]

Gallagher M.J., Hogg F.R.A., Zoumprouli A., et al. Spinal Cord Blood Flow in Patients with Acute Spinal Cord Injuries // J Neurotrauma. 2019. Vol. 36, № 6. Р. 919–929. doi: 10.1089/neu.2018.5961

[15]

Reynès C, Vinet A, Maltinti O, Knapp Y. Minimizing the duration of laser Doppler flowmetry recordings while maintaining wavelet analysis quality: A methodological study. Microvasc Res. 2020;131:104034. doi: 10.1016/j.mvr.2020.104034

[16]

Reynès C., Vinet A., Maltinti O., Knapp Y. Minimizing the duration of laser Doppler flowmetry recordings while maintaining wavelet analysis quality: A methodological study // Microvasc Res. 2020. Vol. 131. Р. 104034. doi: 10.1016/j.mvr.2020.104034

[17]

Krupatkin AI, Sidorov VV. Functional diagnostics of the state of microcirculatory and tissue systems. Fluctuations, information, non-linearity. A guide for doctors. Moscow: LIBROCOM Book House; 2013. 496 р.

[18]

Крупаткин А.И., Сидоров В.В. Функциональная диагностика состояния микроциркуляторно-тканевых систем. Колебания, информация, нелинейность. Руководство для врачей. Москва: Книжный дом ЛИБРОКОМ, 2013. 496 с.

[19]

Krupatkin AI. Functional assessment of perivascular innervation of the skin of the extremities using laser Doppler flowmetry. Human Physiology. 2004;30(1):99–104. EDN: OXNWFR

[20]

Крупаткин А.И. Функциональная оценка периваскулярной иннервации кожи конечностей с помощью лазерной допплеровской флоуметрии // Физиология человека. 2004. Т. 30, № 1. C. 99–104. EDN: OXNWFR

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1353KB)

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/