Evaluation of the elemental composition and radiological density of bone tissue when replacing a metaphyseal defect with bioceramic phosphate-silicate granules (experimental study)
Andrey A. Rozhdestvenskiy , German G. Dzuba , Denis A. Polonyankin
N.N. Priorov Journal of Traumatology and Orthopedics ›› 2024, Vol. 31 ›› Issue (3) : 351 -366.
Evaluation of the elemental composition and radiological density of bone tissue when replacing a metaphyseal defect with bioceramic phosphate-silicate granules (experimental study)
Background: It is known that bioceramic implants containing various calcium or silicon compounds in isolation demonstrate osteoconductive effect in the replacement of post-traumatic bone defects. The combined use of these elements in single material should potentiate the organotypic filling of the bone cavity by creating favorable ion microenvironment and staged biodegradation.
AIM: To identify the correlation of radiological indicators of the density of newly formed bone tissue and content of micro- and macronutrients in a bone defect when it is replaced by bioceramics with various mass ratio of calcium phosphate and silicate.
MATERIALS AND METHODS: The study was performed on male rabbits of the “white giant” breed, which, after receiving a standardized delimited metaphysical bone defect, implants with variable ratio of calcium phosphate and calcium silicate (in proportions of 40/60, 50/50 and 60/40 wt. %) were used to replace it. The results were evaluated using multispiral computed tomography and scanning electron microscopy energy dispersive analysis with detection by the method of correlation analysis of possible connections between the obtained data.
RESULTS: Quantitative indicators of calcium and phosphorus content in bone regenerate in all groups increased mainly in the period from 30 to 60 days, and silicon content, reaching maximum amounts by the 30th day of the experiment, subsequently decreased monotonously, which showed participation of this element in the starting regenerative processes, and its decrease served as a marker of organotypic restructuring. In the elemental analysis of newly formed bone tissue during implantation of bioceramics containing phosphate and calcium silicate in the proportion of 60/40 wt. %. The highest amounts of calcium, phosphorus and silicon and the highest density of newly formed bone tissue were noted, which had direct correlation, and this pattern was observed both in the early stages (30 days) and throughout the experimental study.
CONCLUSION: Analyzing the data obtained, it can be concluded that it is advisable to study the features of the course of reparative osteogenesis depending on the ionic environment, as well as the high potential of using synthetic bioceramics in general and the prospects of using implants on the basis of phosphate-silicate composites for bone defects replacement.
osteogenesis / experiment / implant / calcium phosphate / calcium silicate / multispiral computed tomography / scanning electron microscopy / energy dispersive analysis
| [1] |
Shteinle AV. Posttraumatic regeneration of bone tissue (part 1). Siberian Medical Journal. 2009;4(1):101–108. EDN: KZFTDH |
| [2] |
Штейнле А.В. Посттравматическая регенерация костной ткани (часть 1) // Сибирский медицинский журнал. 2009. Т. 4, № 1. С. 101–108. EDN: KZFTDH |
| [3] |
Borzunov DYu. Non-free bone grafting according to G.A. Ilizarov in the problem of rehabilitation of patients with long bones defects and pseudoarthroses. Genij Ortopedii. 2011;(2):21–26. EDN: OGCTHL |
| [4] |
Борзунов Д.Ю. Несвободная костная пластика по Г.А. Илизарову в проблеме реабилитации больных с дефектами и ложными суставами длинных костей // Гений ортопедии. 2011. № 2. С. 21–26. EDN: OGCTHL |
| [5] |
Bokov AE, Mlyavykh SG, Shirokova NY, et al. Current Trends in the Development of Materials for Bone Grafting and Spinal Fusion (Review). Modern Technologies in Medicine. 2018;10(4):203–219. doi: 10.17691/stm2018.10.4.24 |
| [6] |
Bokov A.E., Mlyavykh S.G., Shirokova N.Y., Davydenko D.V., Orlinskaya N.Y. Current Trends in the Development of Materials for Bone Grafting and Spinal Fusion (Review) // Modern Technologies in Medicine. 2018. Vol. 10, № 4. P. 203–219. doi: 10.17691/stm2018.10.4.24 |
| [7] |
Putliayev VI. Modern bioceramic materials. Sorov education journal. 2004;8(1):44–50. |
| [8] |
Путляев В.И. Современные биокерамические материалы // Соровский образовательный журнал. 2004. Т. 8, № 1. С. 44–50. |
| [9] |
Zhou P, Xia D, Ni Z, et al. Calcium silicate bioactive ceramics induce osteogenesis through oncostatin M. Bioact Mater. 2020;6(3):810–822. doi: 10.1016/j.bioactmat.2020.09.018 |
| [10] |
Zhou P., Xia D., Ni Z., et al. Calcium silicate bioactive ceramics induce osteogenesis through oncostatin M // Bioact Mater. 2020. Vol. 6, № 3. P. 810–822. doi: 10.1016/j.bioactmat.2020.09.018 |
| [11] |
Persikov AV, Brodsky B. Unstable molecules form stable tissues. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(3):1101–1103. doi: 10.1073/pnas.042707899 |
| [12] |
Persikov A.V., Brodsky B. Unstable molecules form stable tissues // Proceedings of the National Academy of Sciences of the United States of America. 2002. Vol. 99, № 3. P. 1101–1103. doi: 10.1073/pnas.042707899 |
| [13] |
Gromova OA, Troshin Iyu, Limanova OA. Calcium and its synergists in supporting the structure of connective and bone tissue. Attending doctor. 2014;(5):69. EDN: SCPKLN |
| [14] |
Громова О.А., Торшин И.Ю., Лиманова О.А. Кальций и его синергисты в поддержке структуры соединительной и костной ткани // Лечащий врач. 2014. № 5. С. 69. EDN: SCPKLN |
| [15] |
Mu Y, Du Z, Xiao L, et al. The Localized Ionic Microenvironment in Bone Modelling/Remodelling: A Potential Guide for the Design of Biomaterials for Bone Tissue Engineering. J Funct Biomater. 2023;14(2):56. doi: 10.3390/jfb14020056 |
| [16] |
Mu Y., Du Z., Xiao L., et al. The Localized Ionic Microenvironment in Bone Modelling/Remodelling: A Potential Guide for the Design of Biomaterials for Bone Tissue Engineering // J Funct Biomater. 2023. Vol. 14, № 2. P. 56. doi: 10.3390/jfb14020056 |
| [17] |
Gharbi A, Oudadesse H, El Feki H, et al. High Boron Content Enhances Bioactive Glass Biodegradation. J Funct Biomater. 2023;14(7):364. doi: 10.3390/jfb14070364 |
| [18] |
Gharbi A., Oudadesse H., El Feki H., et al. High Boron Content Enhances Bioactive Glass Biodegradation // J Funct Biomater. 2023. Vol. 14, № 7. P. 364. doi: 10.3390/jfb14070364 |
| [19] |
Jugdaohsingh R. Silicon and bone health. J Nutr Health Aging. 2007;11(2):99–110. |
| [20] |
Jugdaohsingh R. Silicon and bone health // J Nutr Health Aging. 2007. Vol. 11, № 2. P. 99–110. |
| [21] |
Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res. 2023;27(1):86. doi: 10.1186/s40824-023-00422-6 |
| [22] |
Zhou B., Jiang X., Zhou X., et al. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances // Biomater Res. 2023. Vol. 27, № 1. P. 86. doi: 10.1186/s40824-023-00422-6 |
| [23] |
Skripnikova IA, Guriev AV. Micronutrients in the prevention of osteoporosis: focus on silicon. Osteoporosis and osteopathy. 2014;17(2):36–40. doi: 10.14341/osteo2014236-40 |
| [24] |
Скрипникова И.А., Гурьев А.В. Микроэлементы в профилактике остеопороза: фокус на кремний // Остеопороз и остеопатии. 2014. Т. 17, № 2. С. 36–40. doi: 10.14341/osteo2014236-40 |
| [25] |
Ros-Tárraga P, Mazón P, Revilla-Nuin B, et al. High temperature CaSiO3-Ca3(PO4)2 ceramic promotes osteogenic differentiation in adult human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl. 2020;(107):110355. doi: 10.1016/j.msec.2019.110355 |
| [26] |
Ros-Tárraga P., Mazón P., Revilla-Nuin B., et al. High temperature CaSiO3-Ca3(PO4)2 ceramic promotes osteogenic differentiation in adult human mesenchymal stem cells // Mater Sci Eng C Mater Biol Appl. 2020. Vol. 107. P. 110355. doi: 10.1016/j.msec.2019.110355 |
| [27] |
Misch CE, Kircos LT. Diagnostic imaging and techniques. In: Misch C.E., editor. Contemporary Implant Dentistry. 2nd ed. Mosby; St. Louis; 1999. Р. 73–87. |
| [28] |
Misch C.E., Kircos L.T. Diagnostic imaging and techniques. Contemporary Implant Dentistry. 2nd ed. Mosby; St. Louis, 1999. P. 73–87. |
| [29] |
Rozhdestvenskiy AA, Dzuba GG, Erofeev SA, et al. Reparative regeneration when replacing a bone defect with a synthetic granular implant based on various combinations of calcium phosphate and silicate. Polytrauma. 2023;(4):63–71. EDN: BVAOQD |
| [30] |
Рождественский А.А., Дзюба Г.Г., Ерофеев С.А., и др. Репаративная регенерация при замещении костного дефекта синтетическим гранулированным имплантатом на основе различных комбинаций фосфата и силиката кальция // Политравма. 2023. № 4. С. 63–71. EDN: BVAOQD |
| [31] |
Kupka JR, Sagheb K, Al-Nawas B, Schiegnitz E. The Sympathetic Nervous System in Dental Implantology. J Clin Med. 2023;12(8):2907. doi: 10.3390/jcm1208290 |
| [32] |
Kupka J.R., Sagheb K., Al-Nawas B., Schiegnitz E. The Sympathetic Nervous System in Dental Implantology // J Clin Med. 2023. Vol. 12, № 8. P. 2907. doi: 10.3390/jcm12082907 |
| [33] |
Takayama T, Imamura K, Yamano S. Growth Factor Delivery Using a Collagen Membrane for Bone Tissue Regeneration. Biomolecules. 2023;13(5):809. doi: 10.3390/biom13050809 |
| [34] |
Takayama T., Imamura K., Yamano S. Growth Factor Delivery Using a Collagen Membrane for Bone Tissue Regeneration // Biomolecules. 2023. Vol. 13, № 5. P. 809. doi: 10.3390/biom13050809 |
| [35] |
Koritkin AA, Zukin AA, Zakharova DV, Novikova YaS. The use of platelet-rich plasma in replacing the focus of avascular necrosis of the femoral head with allografts. Traumatology and orthopedics of Russia. 2018;24(1):115–122. doi: 10.21823/2311-2905-2018-24-1-115-122 |
| [36] |
Корыткин А.А., Зыкин А.А., Захарова Д.В., Новикова Я.С. Применение обогащённой тромбоцитами плазмы при замещении очага аваскулярного некроза головки бедренной кости аллотрансплантатами // Травматология и ортопедия России. 2018. Т. 24, № 1. С. 115–122. doi: 10.21823/2311-2905-2018-24-1-115-122 |
| [37] |
Blazgenko AN, Rodin IA, Ponkina O, et al. Influence of A-PRP-therapy on reparative regeneration of bone tissue in fresh limb fractures. Innovative medicine of Kuban. 2019;3(15):32–38. doi: 10.35401/2500-0268-2019-15-3-32-38 |
| [38] |
Блаженко А.Н., Родин И.А., Понкина О.Н., и др. Влияние A-PRP-терапии на репаративную регенерацию костной ткани при свежих переломах костей конечностей // Инновационная медицина Кубани. 2019. Т. 3, № 15. С. 32–38. doi: 10.35401/2500-0268-2019-15-3-32-38 |
| [39] |
Wang Y, Kim J, Chan A, Whyne C, Nam D. A two-phase regulation of bone regeneration: IL-17F mediates osteoblastogenesis via C/EBP-β in vitro. Bone. 2018;116:47–57. doi: 10.1016/j.bone.2018.07.007 |
| [40] |
Wang Y., Kim J., Chan A., Whyne C., Nam D. A two-phase regulation of bone regeneration: IL-17F mediates osteoblastogenesis via C/EBP-β in vitro // Bone. 2018. Vol. 116. P. 47–57. doi: 10.1016/j.bone.2018.07.007 |
| [41] |
Monageng E, Offor U, Takalani NB, Mohlala K, Opuwari CS. A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells. Antioxidants (Basel). 2023;12(8):1559. doi: 10.3390/antiox12081559 |
| [42] |
Monageng E., Offor U., Takalani N.B., Mohlala K., Opuwari C.S. A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells // Antioxidants (Basel). 2023. Vol. 12, № 8. P. 1559. doi: 10.3390/antiox12081559 |
| [43] |
Dedov II, Melnichenko GA. Endocrinology. Moscow: GEOTAR-Media; 2019. 1112 p. |
| [44] |
Дедов И.И., Мельниченко Г.А. Эндокринология. Москва: ГЭОТАР-Медиа, 2019. 1112 с. |
| [45] |
Gao M, Du Z, Dong Q, Su S, Tian L. DAP1 regulates osteoblast autophagy via the ATG16L1-LC3 axis in Graves’ disease-induced osteoporosis. J Orthop Surg Res. 2023;18(1):711. doi: 10.1186/s13018-023-04171-z |
| [46] |
Gao M., Du Z., Dong Q., Su S., Tian L. DAP1 regulates osteoblast autophagy via the ATG16L1-LC3 axis in Graves’ disease-induced osteoporosis // J Orthop Surg Res. 2023. Vol. 18, № 1. P. 711. doi: 10.1186/s13018-023-04171-z |
| [47] |
Miromanov AM, Gusev KA. Hormonal regulation of osteogenesis: a review of the literature. Traumatology and orthopedics of Russia. 2021;27(4):120–130. doi: 10.21823/2311-2905-1609 |
| [48] |
Мироманов А.М., Гусев К.А. Гормональная регуляция остеогенеза: обзор литературы // Травматология и ортопедия России. 2021. Т. 27, № 4. С. 120–130. doi: 10.21823/2311-2905-1609 |
| [49] |
Aguilar A, Gifre L, Ureña-Torres P, et al. Pathophysiology of bone disease in chronic kidney disease: from basics to renal osteodystrophy and osteoporosis. Front Physiol. 2023;14:1177829. doi: 10.3389/fphys.2023.1177829 |
| [50] |
Aguilar A., Gifre L., Ureña-Torres P., et al. Pathophysiology of bone disease in chronic kidney disease: from basics to renal osteodystrophy and osteoporosis // Front Physiol. 2023. Vol. 14. P. 1177829. doi: 10.3389/fphys.2023.1177829 |
| [51] |
Hwang J, Lee SY, Jo CH. Degenerative tendon matrix induces tenogenic differentiation of mesenchymal stem cells. J Exp Orthop. 2023;10(1):15. doi: 10.1186/s40634-023-00581-4 |
| [52] |
Hwang J., Lee S.Y., Jo C.H. Degenerative tendon matrix induces tenogenic differentiation of mesenchymal stem cells // J Exp Orthop. 2023. Vol. 10, № 1. P. 15. doi: 10.1186/s40634-023-00581-4 |
| [53] |
Xu B, Wang X, Wu C, et al. Flavonoid compound icariin enhances BMP-2 induced differentiation and signalling by targeting to connective tissue growth factor (CTGF) in SAMP6 osteoblasts. PloS One. 2018;13(7):e0200367. doi: 10.1371/journal.pone.0200367 |
| [54] |
Xu B., Wang X., Wu C., et al. Compound icariin enhances BMP-2 induced differentiation and signalling by targeting to connective tissue growth factor (CTGF) in SAMP6 osteoblasts // PloS One. 2018. Vol. 13, № 7. P. e0200367. doi: 10.1371/journal.pone.0200367 |
| [55] |
Shkurupy VA, Kim V, Kovner AV, Cherdanceva LA. Connective tissue and the problems of its pathological conditions. Bulletin of Siberian Medicine. 2017;16:75–85. doi: 10.20538/1682-0363-2017-4-75-85 |
| [56] |
Shkurupy V.A., Kim L.B., Kovner A., Cherdanceva L.A. Connective tissue and the problems of its pathological conditions // Bulletin of Siberian Medicine. 2017. Vol. 16. P. 75–85. doi: 10.20538/1682-0363-2017-4-75-85 |
| [57] |
Mofakhami S, Salahinejad E. Biphasic calcium phosphate microspheres in biomedical applications. J Control Release. 2021;338:527–536. doi: 10.1016/j.jconrel.2021.09.004 |
| [58] |
Mofakhami S., Salahinejad E. Biphasic calcium phosphate microspheres in biomedical applications // J Control Release. 2021. Vol. 338. P. 527–536. doi: 10.1016/j.jconrel.2021.09.004 |
| [59] |
Kamitakahara M, Tatsukawa E, Shibata Y, et al. Effect of silicate incorporation on in vivo responses of α-tricalcium phosphate ceramics. J Mater Sci Mater Med. 2016;27(5):97. doi: 10.1007/s10856-016-5706-5 |
| [60] |
Kamitakahara M., Tatsukawa E., Shibata Y., et al. Effect of silicate incorporation on in vivo responses of α-tricalcium phosphate ceramics // J Mater Sci Mater Med. 2016. Vol. 27, № 5. P. 97. doi: 10.1007/s10856-016-5706-5 |
| [61] |
Dashnyam K, Buitrago JO, Bold T, et al. Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds. Biomater Sci. 2019;7(12):5221–5231. doi: 10.1039/c9bm01103j |
| [62] |
Dashnyam K., Buitrago J.O., Bold T., et al. Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds // Biomater Sci. 2019. Vol. 7, № 12. P. 5221–5231. doi: 10.1039/c9bm01103j |
| [63] |
Edranov SS, Matveeva NY, Kalinichenko SG. Osteogenic and Regenerative Potential of Free Gingival Graft. Bull Exp Biol Med. 2021;171:404–401. doi: 10.1007/s10517-021-05237-w |
| [64] |
Edranov S.S., Matveeva N.Y., Kalinichenko S.G. Osteogenic and Regenerative Potential of Free Gingival Graft // Bull Exp Biol Med. 2021. Vol. 171. P. 404–401. doi: 10.1007/s10517-021-05237-w |
| [65] |
Zhang J, Liu Y, Chen Y, et al. Adipose-Derived Stem Cells: Current Applications and Future Directions in the Regeneration of Multiple Tissues. Stem Cells Int. 2020;2020:8810813. doi: 10.1155/2020/8810813 |
| [66] |
Zhang J., Liu Y., Chen Y., et al. Adipose-Derived Stem Cells: Current Applications and Future Directions in the Regeneration of Multiple Tissues // Stem Cells Int. 2020. Vol. 2020. P. 8810813. doi: 10.1155/2020/8810813 |
| [67] |
Karadjian M, Essers C, Tsitlakidis S, et al. Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence. Int J Mol Sci. 2019;20(2):305. doi: 10.3390/ijms20020305 |
| [68] |
Karadjian M., Essers C., Tsitlakidis S., et al. Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence // Int J Mol Sci. 2019. Vol. 20, № 2. P. 305. doi: 10.3390/ijms20020305 |
| [69] |
Keshavarz M, Alizadeh P, Kadumudi FB, et al. Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healing. ACS Appl Mater Interfaces. 2023;15(17):21476–21495. doi: 10.1021/acsami.3c01717 |
| [70] |
Keshavarz M., Alizadeh P., Kadumudi F.B., et al. Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healing // ACS Appl Mater Interfaces. 2023. Vol. 15, № 17. P. 21476–21495. doi: 10.1021/acsami.3c01717 |
| [71] |
Polonyankin DA, Blesman AI, Postikov DV, Teployhov AA. Theoretical foundations of scanning electron microscopy and energy dispersive analysis of nanomaterials: tutorial. Omsk: OmGTU; 2019. 116 p. |
| [72] |
Полонянкин Д.А., Блесман А.И., Постников Д.В., Теплоухов А.А. Теоретические основы растровой электронной микроскопии и энергодисперсионного анализа наноматериалов: учеб. пособие. Омск: Изд-во ОмГТУ, 2019. С. 5–10. |
| [73] |
Chuiko AN, Kopitov AA. Computed tomography and basic mechanical characteristics of bone tissues. Medical visualization. 2012;(1):102–107. EDN: OYWKSL |
| [74] |
Чуйко А.Н., Копытов А.А. Компьютерная томография и основные механические характеристики костных тканей // Медицинская визуализация. 2012. № 1. С. 102–107. EDN: OYWKSL |
| [75] |
Misch CE. Density of bone: Effect on treatment planning, surgical approach, and healing. In: Contemporary Implant Dentistry. St. Louis, MI, USA; 1993. P. 469–485. |
| [76] |
Misch C.E. Density of bone: Effect on treatment planning, surgical approach, and healing. In: Contemporary Implant Dentistry. St. Louis, MI, USA, 1993. P. 469–485. |
| [77] |
Yablokov AE. Evaluation of the optical density of bone tissue in dental implantation. Russian Dentistry. 2019;12(3):8–13. doi: 10.17116/rosstomat2019120318 |
| [78] |
Яблоков А.Е. Оценка оптической плотности костной ткани при дентальной имплантации // Российская стоматология. 2019. Т. 12, № 3. С. 8–13. doi: 10.17116/rosstomat2019120318 |
| [79] |
Baek YW, Lim YJ, Kim B. Comparison of Implant Surgery Methods of Cortical Tapping and Cortical Widening in Bone of Various Density: A Three-Dimensional Finite Element Study. Materials (Basel). 2023;16(8):3261. doi: 10.3390/ma16083261 |
| [80] |
Baek Y.W., Lim Y.J., Kim B. Comparison of Implant Surgery Methods of Cortical Tapping and Cortical Widening in Bone of Various Density: A Three-Dimensional Finite Element Study // Materials (Basel). 2023. Vol. 16, № 8. P. 3261. doi: 10.3390/ma16083261 |
Eco-Vector
/
| 〈 |
|
〉 |