Comparative characteristics of cervical sagittal balance parameters and atlantoaxial instability criteria in normal and Down syndrome children

Alexander A. Kuleshov , Anton G. Nazarenko , Vladislav A. Sharov , Marchel S. Vetrile , Anatoliy V. Ovsyankin , Elena S. Kuzminova , Igor N. Lisyansky , Sergey N. Makarov , Uliya V. Strunina

N.N. Priorov Journal of Traumatology and Orthopedics ›› 2024, Vol. 31 ›› Issue (1) : 55 -66.

PDF (1465KB)
N.N. Priorov Journal of Traumatology and Orthopedics ›› 2024, Vol. 31 ›› Issue (1) : 55 -66. DOI: 10.17816/vto624245
Original study articles
research-article

Comparative characteristics of cervical sagittal balance parameters and atlantoaxial instability criteria in normal and Down syndrome children

Author information +
History +
PDF (1465KB)

Abstract

BACKGROUND: Sagittal balance of the spine has received considerable development in recent years. However, most studies focused on the assessment of vertebral–pelvic parameters. The cervical spine has long received insufficient attention from researchers, but this trend has been changing. The study of cervical sagittal balance in children with Down syndrome is beneficial in approaching the preconditions of atlantoaxial instability.

AIM: To perform a comparative analysis of cervical sagittal balance parameters and atlantoaxial instability criteria in normal and Down syndrome children.

MATERIALS AND METHODS: Radiographs of the cervical spine in the neutral position in lateral projection and postural radiographs of 110 pediatric patients were analyzed retrospectively. The patients were divided into two groups: group 1 (normal), 60 children aged 4–17 years without spinal pathology, and group 2 (Down syndrome), 50 children aged 4–17 years with Down syndrome. The parameters of cervical sagittal balance (Oc-C2, Oc-C7, C1-C2, C2-C7, C2-C7H, C7S, Th1S, TIA, NT) and criteria for atlantoaxial instability (Nakamura angle, ADI, SAC-C1, SAC-C1/SAC-C4) were obtained, and data was statistically analyzed.

RESULTS: Significant differences in the parameters C7S, Th1S, and TIA increased in children with Down syndrome. These parameters are involved in cervical lordosis; however, no significant differences in cervical lordosis angles were found. Furthermore, significant differences were noted in the criteria of atlantoaxial instability ADI, SAC-C1, and SAC-C1/SAC-C4 toward their decreasing in children with Down syndrome.

CONCLUSION: In patients with Down syndrome, the indices of cervical lordosis are statistically greater than those in normal children. Moreover, the parameters of cervical lordosis in patients with Down syndrome do not differ from those in normal children. Therefore, during flexion, subcompensation of the cervical spine is observed in children with Down syndrome. Given the statistically smaller indicators ADI, SAC-C1, SAC-C1/SAC-C4, low neck muscle tone, and ligamentous hypermobility, these abnormalities can be considered as congenital predisposition factors for atlantoaxial instability in children with Down syndrome.

Keywords

cervical sagittal balance / Down syndrome / cervical spine / atlantoaxial instability / os odontoideum

Cite this article

Download citation ▾
Alexander A. Kuleshov, Anton G. Nazarenko, Vladislav A. Sharov, Marchel S. Vetrile, Anatoliy V. Ovsyankin, Elena S. Kuzminova, Igor N. Lisyansky, Sergey N. Makarov, Uliya V. Strunina. Comparative characteristics of cervical sagittal balance parameters and atlantoaxial instability criteria in normal and Down syndrome children. N.N. Priorov Journal of Traumatology and Orthopedics, 2024, 31(1): 55-66 DOI:10.17816/vto624245

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dubousset J. Three-dimensional analysis of the scoliotic deformity. In: Weinstein SL, editor. The pediatric spine: principles and practice. New York: Raven Press; 1994. P: 479–496.

[2]

Dubousset J. Three-dimensional analysis of the scoliotic deformity. In: Weinstein S.L., editor. The pediatric spine: principles and practice. New York: Raven Press, 1994. P. 479–496.

[3]

Le Huec JC, Thompson W, Mohsinaly Y, Barrey C, Faundez A. Sagittal balance of the spine. Eur Spine J. 2019;28(9):1889–1905. EDN: KDEURA doi: 10.1007/s00586-019-06083-1

[4]

Le Huec J.C., Thompson W., Mohsinaly Y., Barrey C., Faundez A. Sagittal balance of the spine // Eur Spine J. 2019. Vol. 28, № 9. Р. 1889–1905. EDN: KDEURA doi: 10.1007/s00586-019-06083-1

[5]

Glukhov DA, Zorin VI, Maltseva YaA, Mushkin AYu. Sagittal balance of the cervical spine in children older than 4 years: what is the norm? Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2022;19(4):19–29. EDN: OBZBIX doi: http://dx.doi.org/10.14531/ss2022.4.19-29

[6]

Глухов Д.А., Зорин В.И., Мальцева Я.А., Мушкин А.Ю. Сагиттальный баланс шейного отдела позвоночника у детей старше 4 лет: что считать нормой? // Хирургия позвоночника. 2022. Т. 19, № 4. С. 19–29. EDN: OBZBIX doi: 10.14531/ss2022.4.19-29

[7]

Abelin-Genevois K. Sagittal balance of the spine. Orthop Traumatol Surg Res. 2021;107(1S):102769. doi: 10.1016/j.otsr.2020.102769

[8]

Abelin-Genevois K. Sagittal balance of the spine // Orthop Traumatol Surg Res. 2021. Vol. 107, № 1S. Р. 102769. doi: 10.1016/j.otsr.2020.102769

[9]

Alijani B, Rasoulian J. The Sagittal Balance of the Cervical Spine: Radiographic Analysis of Interdependence between the Occipitocervical and Spinopelvic Alignment. Asian Spine J. 2020;14(3):287–297. doi: 10.31616/asj.2019.0165

[10]

Alijani B., Rasoulian J. The Sagittal Balance of the Cervical Spine: Radiographic Analysis of Interdependence between the Occipitocervical and Spinopelvic Alignment // Asian Spine J. 2020. Vol. 14, № 3. Р. 287–297. doi: 10.31616/asj.2019.0165

[11]

Le Huec JC, Demezon H, Aunoble S. Sagittal parameters of global cervical balance using EOS imaging: normative values from a prospective cohort of asymptomatic volunteers. Eur Spine J. 2015;24(1):63–71. EDN: ZSQYBK doi: 10.1007/s00586-014-3632-0

[12]

Le Huec J.C., Demezon H., Aunoble S. Sagittal parameters of global cervical balance using EOS imaging: normative values from a prospective cohort of asymptomatic volunteers // Eur Spine J. 2015. Vol. 24, № 1. Р. 63–71. EDN: ZSQYBK doi: 10.1007/s00586-014-3632-0

[13]

Caird MS, Wills BP, Dormans JP. Down syndrome in children: the role of the orthopaedic surgeon. J Am Acad Orthop Surg. 2006;14(11):610–9. doi: 10.5435/00124635-200610000-00003

[14]

Caird M.S., Wills B.P., Dormans J.P. Down syndrome in children: the role of the orthopaedic surgeon // J Am Acad Orthop Surg. 2006. Vol. 14, № 11. Р. 610–9. doi: 10.5435/00124635-200610000-00003

[15]

Collacott RA. Atlantoaxial instability in Down’s syndrome. Br Med J (Clin Res Ed). 1987;294(6578):988–9. doi: 10.1136/bmj.294.6578.988

[16]

Collacott R.A. Atlantoaxial instability in Down’s syndrome // Br Med J (Clin Res Ed). 1987. Vol. 294, № 6578. Р. 988–9. doi: 10.1136/bmj.294.6578.988

[17]

Carfì A, Liperoti R, Fusco D, et al. Bone mineral density in adults with Down syndrome. Osteoporos Int. 2017;28(10):2929–2934. EDN: VCRVWA doi: 10.1007/s00198-017-4133-x

[18]

Carfì A., Liperoti R., Fusco D., et al. Bone mineral density in adults with Down syndrome // Osteoporos Int. 2017. Vol. 28, № 10. Р. 2929–2934. EDN: VCRVWA doi: 10.1007/s00198-017-4133-x

[19]

McKelvey KD, Fowler TW, Akel NS, et al. Low bone turnover and low bone density in a cohort of adults with Down syndrome. Osteoporos Int. 2013;24(4):1333–8. EDN: UGFAMY doi: 10.1007/s00198-012-2109-4

[20]

McKelvey K.D., Fowler T.W., Akel N.S., et al. Low bone turnover and low bone density in a cohort of adults with Down syndrome // Osteoporos Int. 2013. Vol. 24, № 4. Р. 1333–8. EDN: UGFAMY doi: 10.1007/s00198-012-2109-4

[21]

Sergeenko OM, Dyachkov KA, Ryabykh SO, Burtsev AV, Gubin AV. Atlantoaxial dislocation due to os odontoideum in patients with Down’s syndrome: literature review and case reports. Childs Nerv Syst. 2020;36(1):19–26. doi: 10.1007/s00381-019-04401-y

[22]

Sergeenko O.M., Dyachkov K.A., Ryabykh S.O., Burtsev A.V., Gubin A.V. Atlantoaxial dislocation due to os odontoideum in patients with Down’s syndrome: literature review and case reports // Childs Nerv Syst. 2020. Vol. 36, № 1. Р. 19–26. doi: 10.1007/s00381-019-04401-y

[23]

Kuleshov AA, Gubin AV, Sharov VA, Vetrile MS, Lisyansky IN, Makarov SN. Screening examination of the cervical spine in patients with Down syndrome. N.N. Priorov Journal of Traumatology and Orthopedics. 2023;30(3):325−334. EDN: APTTNT doi: 10.17816/vto568156

[24]

Кулешов А.А., Губин А.В., Шаров В.А., Ветрилэ М.С., Лисянский И.Н., Макаров С.Н. Скрининговое обследование шейного отдела позвоночника у пациентов с синдромом Дауна // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2023. Т. 30, № 3. С. 325−334. EDN: APTTNT doi: 10.17816/vto568156

[25]

Nakamura N, Inaba Y, Oba M, et al. Novel 2 Radiographical Measurements for Atlantoaxial Instability in Children with Down Syndrome. Spine. 2014;39(26):E1566–E1574. doi: 10.1097/brs.0000000000000625

[26]

Nakamura N., Inaba Y., Oba M., et al. Novel 2 Radiographical Measurements for Atlantoaxial Instability in Children with Down Syndrome // Spine. 2014. Vol. 39, № 26. Р. E1566–E1574. doi: 10.1097/brs.0000000000000625

[27]

Khusainov NO, Vissarionov SV, Kokushin DN. Craniocervical instability in children with Down’s syndrome. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2016;4(3):71–77. doi: 10.17816/PTORS4371-77

[28]

Хусаинов Н.О., Виссарионов С.В., Кокушин Д.Н. Нестабильность краниовертебральной области у детей с синдромом Дауна // Ортопедия, травматология и восстановительная хирургия детского возраста. 2016. Т. 4, № 3. С. 71–77. doi: 10.17816/PTORS4371-77

[29]

Lee SH, Kim KT, Seo EM, Suk KS, Kwack YH, Son ES. The influence of thoracic inlet alignment on the craniocervical sagittal balance in asymptomatic adults. J Spinal Disord Tech. 2012;25:E41–E47. doi: 10.1097/BSD.0b013e3182396301

[30]

Lee S.H., Kim K.T., Seo E.M., Suk K.S., Kwack Y.H., Son E.S. The influence of thoracic inlet alignment on the craniocervical sagittal balance in asymptomatic adults // J Spinal Disord Tech. 2012. Vol. 25. Р. E41–E47. doi: 10.1097/BSD.0b013e3182396301

[31]

Janusz P, Tyrakowski M, Glowka P, Offoha R, Siemionow K. Influence of cervical spine position on the radiographic parameters of the thoracic inlet alignment. Eur Spine J. 2015;24:2880–2884. EDN: GRBAFQ doi: 10.1007/s00586-015-4023-x

[32]

Janusz P., Tyrakowski M., Glowka P., Offoha R., Siemionow K. Influence of cervical spine position on the radiographic parameters of the thoracic inlet alignment // Eur Spine J. 2015. Vol. 24. Р. 2880–2884. EDN: GRBAFQ doi: 10.1007/s00586-015-4023-x

[33]

French HG, Burke SW, Roberts JM, Johnston CE 2nd, Whitecloud T, Edmunds JO. Upper cervical ossicles in Down syndrome. J Pediatr Orthop. 1987;7(1):69–71. doi: 10.1097/01241398-198701000-00014

[34]

French H.G., Burke S.W., Roberts J.M., Johnston C.E. 2nd, Whitecloud T., Edmunds J.O. Upper cervical ossicles in Down syndrome // J Pediatr Orthop. 1987. Vol. 7, № 1. Р. 69–71. doi: 10.1097/01241398-198701000-00014

[35]

Cros T, Linares R, Castro A, Mansilla F. A radiological study of the cervical alterations in Down syndrome. New findings on computerized tomography and three dimensional reconstructions. Rev Neurol. 2000;30(12):1101–7. (In Span). doi: 10.33588/rn.3012.99216

[36]

Cros T., Linares R., Castro A., Mansilla F. Estudio radiológico de las alteraciones cervicales en el síndrome de Down. Nuevos hallazgos mediante tomografía computarizada y reconstrucciones tridimensionales // Rev Neurol. 2000. Vol. 30, № 12. Р. 1101–7. (In Span). doi: 10.33588/rn.3012.99216

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (1465KB)

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/