Our experience in 3D-modelling in pilon (distal tibial plafond) fractures

Mikhail V. Parshikov , Arsenty B. Koshkin , Nikolay V. Yarigin , Sergey V. Novikov , Andrey A. Prokhorov , Mikhail V. Govorov , Rasul N. Aliev , Vladimir V. Guriev

N.N. Priorov Journal of Traumatology and Orthopedics ›› 2024, Vol. 31 ›› Issue (1) : 31 -43.

PDF
N.N. Priorov Journal of Traumatology and Orthopedics ›› 2024, Vol. 31 ›› Issue (1) : 31 -43. DOI: 10.17816/vto606713
Original study articles
research-article

Our experience in 3D-modelling in pilon (distal tibial plafond) fractures

Author information +
History +
PDF

Abstract

BACKGROUND: Internal fixation of pilon fractures remains challenging despite the development of new technologies in medical imaging and implant design and various scientific investigations on this problem. A key point in therapeutic strategy is preoperative planning. Since the beginning of the twenty-first century, the procedure has changed dramatically from plain radiograph drawing to 3D models and internal fixation simulation in vitro.

AIM: This study aimed to evaluate 3D modeling in pilon fracture osteosynthesis preoperative planning.

MATERIALS AND METHODS: The study used open, prospective, randomized, and comparative analysis. We analyzed the data of 60 patients with pilon fractures who had undergone surgical treatment for pilon fractures between July 1, 2020, and December 12, 2021, in Moscow City Hospital No. 17. In 30 patients, 3D models were used in preoperative planning, and in another 30 patients, the traditional planning method was performed. The operation time, intraoperation, X-ray dosage, blood loss, fracture reduction quality, and long-term results were analyzed. Additionally, the surgeon’s comfort in applying the 3D model and ease of doctor–patient communication were assessed using questionnaires.

RESULTS: Results showed that 3D modeling in pilon fracture osteosynthesis preoperative planning has advantages over traditional preoperative planning.

CONCLUSION: Therefore, 3D planning is a promising novel method for distal tibial fracture internal fixation preoperative planning, which provides significant higher degree of fracture anatomy comprehension and facilitates reduction maneuvers and implant positioning.

Keywords

pilon fractures / 3D modeling / preoperative planning

Cite this article

Download citation ▾
Mikhail V. Parshikov, Arsenty B. Koshkin, Nikolay V. Yarigin, Sergey V. Novikov, Andrey A. Prokhorov, Mikhail V. Govorov, Rasul N. Aliev, Vladimir V. Guriev. Our experience in 3D-modelling in pilon (distal tibial plafond) fractures. N.N. Priorov Journal of Traumatology and Orthopedics, 2024, 31(1): 31-43 DOI:10.17816/vto606713

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mauffrey C, Vasario G, Battiston B, et al. Tibial pilon fractures: a review of incidence, diagnosis, treatment, and complications. Acta Orthop Belg. 2011;77(4):432–440.

[2]

Mauffrey C., Vasario G., Battiston B., et al. Tibial pilon fractures: a review of incidence, diagnosis, treatment, and complications // Acta Orthop Belg. 2011. Vol. 77, № 4. Р. 432–440.

[3]

Bear J, Rollick N, Helfet D. Evolution in Management of Tibial Pilon Fractures. Curr Rev Musculoskelet Med. 2018;11(4):537–545. doi: 10.1007/s12178-018-9519-7

[4]

Bear J., Rollick N., Helfet D. Evolution in Management of Tibial Pilon Fractures // Curr Rev Musculoskelet Med. 2018. Vol. 11, № 4. Р. 537–545. doi: 10.1007/s12178-018-9519-7

[5]

Liporace FA, Yoon RS. Decisions and staging leading to definitive open management of pilon fractures: where have we come from and where are we now? J Orthop Trauma. 2012;26(8):488–498. doi: 10.1097/BOT.0b013e31822fbdbe

[6]

Liporace F.A., Yoon R.S. Decisions and staging leading to definitive open management of pilon fractures: where have we come from and where are we now? // J Orthop Trauma. 2012. Vol. 26, № 8. Р. 488–498. doi: 10.1097/BOT.0b013e31822fbdbe

[7]

Harris AM, Patterson BM, Sontich JK, Vallier HA. Results and outcomes after operative treatment of high-energy tibial plafond fractures. Foot Ankle Int. 2006;27(4):256–265. doi: 10.1177/107110070602700406

[8]

Harris A.M., Patterson B.M., Sontich J.K., Vallier H.A. Results and outcomes after operative treatment of high-energy tibial plafond fractures // Foot Ankle Int. 2006. Vol. 27, № 4. Р. 256–265. doi: 10.1177/107110070602700406

[9]

Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B. Etiology of ankle osteoarthritis. Clin Orthop Relat Res. 2009;467(7):1800–6. doi: 10.1007/s11999-008-0543-6

[10]

Valderrabano V., Horisberger M., Russell I., Dougall H., Hintermann B. Etiology of ankle osteoarthritis // Clin Orthop Relat Res. 2009. Vol. 467, № 7. Р. 1800–6. doi: 10.1007/s11999-008-0543-6

[11]

De-las-Heras-Romero J, Lledo-Alvarez AM, Lizaur-Utrilla A, Lopez-Prats FA. Quality of life and prognostic factors after intra-articular tibial pilon fracture. Injury. 2017;48(6):1258–1263. doi: 10.1016/j.injury.2017.03.023

[12]

De-las-Heras-Romero J., Lledo-Alvarez A.M., Lizaur-Utrilla A., Lopez-Prats F.A. Quality of life and prognostic factors after intra-articular tibial pilon fracture // Injury. 2017. Vol. 48, № 6. Р. 1258–1263. doi: 10.1016/j.injury.2017.03.023

[13]

Tochigi Y, Rudert MJ, McKinley TO, Pedersen DR, Brown TD. Correlation of dynamic cartilage contact stress aberrations with severity of instability in ankle incongruity. J Orthop Res. 2008;26(9):1186–1193. doi: 10.1002/jor.20589

[14]

Tochigi Y., Rudert M.J., McKinley T.O., Pedersen D.R., Brown T.D. Correlation of dynamic cartilage contact stress aberrations with severity of instability in ankle incongruity // J Orthop Res. 2008. Vol. 26, № 9. Р. 1186–1193. doi: 10.1002/jor.20589

[15]

Kleinertz H, Tessarzyk M, Schoof B, et al. Visualization of the distal tibial plafond articular surface using four established approaches and the efficacy of instrumented distraction: a cadaveric study. Eur J Trauma Emerg Surg. 2022;48(5):4031–4041. doi: 10.1007/s00068-022-01927-w

[16]

Kleinertz H., Tessarzyk M., Schoof B., et al. Visualization of the distal tibial plafond articular surface using four established approaches and the efficacy of instrumented distraction: a cadaveric study // Eur J Trauma Emerg Surg. 2022. Vol. 48, № 5. Р. 4031–4041. doi: 10.1007/s00068-022-01927-w

[17]

Hull CW, inventor; Apparatus for production of three-dimensional objects by stereolithography. United States patent US 4575330. 1986 March 11.

[18]

Hull C.W., inventor; Apparatus for production of three-dimensional objects by stereolithography. United States patent US 4575330. 1986 March 11.

[19]

Ibrahim T, Beiri A, Azzabi M, et al. Reliability and validity of the subjective component of the american orthopaedic foot and ankle society clinical rating scales. J Foot and Ankle Surg. 2007;46(2):65–74. doi: 10.1053/j.jfas.2006.12.002

[20]

Ibrahim T., Beiri A., Azzabi M., et al. Reliability and validity of the subjective component of the american orthopaedic foot and ankle society clinical rating scales // J Foot and Ankle Surg. 2007. Vol. 46, № 2. Р. 65–74. doi: 10.1053/j.jfas.2006.12.002

[21]

Burwell HN, Charnley AD. The treatment of displaced fractures at the ankle by rigid internal fixation and early joint movement. The Journal of Bone & Joint Surgery (British Volume). 1965;47(4):634–660.

[22]

Burwell H.N., Charnley A.D. The treatment of displaced fractures at the ankle by rigid internal fixation and early joint movement // The Journal of Bone & Joint Surgery (British Volume). 1965. Vol. 47, № 4. Р. 634–660.

[23]

Muller ME, Nazarian S, Koch P, Schatzker J. The comprehensive classification of fractures of long bones. New York: Springer; 1990.

[24]

Muller M.E., Nazarian S., Koch P., Schatzker J. The comprehensive classification of fractures of long bones. New York: Springer, 1990.

[25]

D’Heurle A, Kazemi N, Connelly C, et al. Prospective randomized comparison of locked plates versus nonlocked plates for the treatment of high-energy pilon fractures. Journal of Orthopaedic Trauma. 2015;29(9):420–423. doi: 10.1097/BOT.0000000000000386

[26]

D’Heurle A., Kazemi N., Connelly C., et al. Prospective randomized comparison of locked plates versus nonlocked plates for the treatment of high-energy pilon fractures // Journal of Orthopaedic Trauma. 2015. Vol. 29, № 9. Р. 420–423. doi: 10.1097/BOT.0000000000000386

[27]

Bai J, Wang Y, Zhang P, et al. Efficacy and safety of 3D print-assisted surgery for the treatment of pilon fractures: a meta-analysis of randomized controlled trials. J Orthop Surg Res. 2018;13(1):283. doi: 10.1186/s13018-018-0976-x

[28]

Bai J., Wang Y., Zhang P., et al. Efficacy and safety of 3D print-assisted surgery for the treatment of pilon fractures: a meta-analysis of randomized controlled trials // J Orthop Surg Res. 2018. Vol. 13, № 1. Р. 283. doi: 10.1186/s13018-018-0976-x

[29]

Meng M, Wang J, Sun T, et al. Clinical applications and prospects of 3D printing guide templates in orthopaedics. J Orthop Translat. 2022;34:22–41. doi: 10.1016/j.jot.2022.03.001

[30]

Meng M., Wang J., Sun T., et al. Clinical applications and prospects of 3D printing guide templates in orthopaedics // J Orthop Translat. 2022. Vol. 34. Р. 22–41. doi: 10.1016/j.jot.2022.03.001

[31]

Chepelev L, Wake N, Ryan J, et al.; RSNA Special Interest Group for 3D Printing. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med. 2018;4(1):11. doi: 10.1186/s41205-018-0030-y

[32]

Chepelev L., Wake N., Ryan J., et al.; RSNA Special Interest Group for 3D Printing. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios // 3D Print Med. 2018. Vol. 4, № 1. Р. 11. doi: 10.1186/s41205-018-0030-y

[33]

Auricchio F, Marconi S. 3D printing: clinical applications in orthopaedics and traumatology. EFORT Open Rev. 2017;1(5):121–127. doi: 10.1302/2058-5241.1.000012

[34]

Auricchio F., Marconi S. 3D printing: clinical applications in orthopaedics and traumatology // EFORT Open Rev. 2017. Vol. 1, № 5. Р. 121–127. doi: 10.1302/2058-5241.1.000012

[35]

Skelley NW, Smith MJ, Ma R, Cook JL. Three-dimensional Printing Technology in Orthopaedics. J Am Acad Orthop Surg. 2019;27(24):918–925. doi: 10.5435/JAAOS-D-18-00746

[36]

Skelley N.W., Smith M.J., Ma R., Cook J.L. Three-dimensional Printing Technology in Orthopaedics // J Am Acad Orthop Surg. 2019. Vol. 27, № 24. Р. 918–925. doi: 10.5435/JAAOS-D-18-00746

[37]

Alemayehu DG, Zhang Z, Tahir E, et al. Preoperative Planning Using 3D Printing Technology in Orthopedic Surgery. Biomed Res Int. 2021;2021:7940242. doi: 10.1155/2021/7940242

[38]

Alemayehu D.G., Zhang Z., Tahir E., et al. Preoperative Planning Using 3D Printing Technology in Orthopedic Surgery // Biomed Res Int. 2021. Vol. 2021. Р. 7940242. doi: 10.1155/2021/7940242

[39]

Pal AK, Bhanakar U, Ray B. Three-dimensional (3D) printing: A potentially versatile tool in the field of medicine. Indian J Clin Anat Physiol. 2022;9(2):78–84. doi: 10.18231/j.ijcap.2022.020

[40]

Pal A.K., Bhanakar U., Ray B. Three-dimensional (3D) printing: A potentially versatile tool in the field of medicine // Indian J Clin Anat Physiol. 2022. Vol. 9, № 2. Р. 78–84. doi: 10.18231/j.ijcap.2022.020

[41]

Morgan C, Khatri C, Hanna SA, Ashrafian H, Sarraf KM. Use of three-dimensional printing in preoperative planning in orthopaedic trauma surgery: a systematic review and meta-analysis. World J Orthop. 2019;11(1):57–67. doi: 10.5312/wjo.v11.i1.57

[42]

Morgan C., Khatri C., Hanna S.A., Ashrafian H., Sarraf K.M. Use of three-dimensional printing in preoperative planning in orthopaedic trauma surgery: a systematic review and meta-analysis // World J Orthop. 2019. Vol. 11, № 1. Р. 57–67. doi: 10.5312/wjo.v11.i1.57

[43]

Zhuang Y, Cao S, Lin Y, et al. Minimally invasive plate osteosynthesis of acetabular anterior column fractures using the two-incision minimally invasive approach and a preshaped three dimension plate. International Orthopaedics. 2016;40(10):2157–2162. doi: 10.1007/s00264-015-3111-1

[44]

Zhuang Y., Cao S., Lin Y., et al. Minimally invasive plate osteosynthesis of acetabular anterior column fractures using the two-incision minimally invasive approach and a preshaped three dimension plate // International Orthopaedics. 2016. Vol. 40, № 10. Р. 2157–2162. doi: 10.1007/s00264-015-3111-1

[45]

Yang L, Shang X-W, Fan J-N, et al. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication. BioMed Research International. 2016;2016:2482086. doi: 10.1155/2016/2482086

[46]

Yang L., Shang X.-W., Fan J.-N., et al. Application of 3D Printing in the Surgical Planning of Trimalleolar Fracture and Doctor-Patient Communication // BioMed Research International. 2016. Vol. 2016. Р. 2482086. doi: 10.1155/2016/2482086

[47]

Portalatín EL, Carrazana LF, Colon R, et al. Orthopaedic Surgeon Communication Skills: Perception of Empathy and Patient Satisfaction Through the Use of Anatomic Models. JAAOS: Global Research and Reviews. 2018;2(11):e07. doi: 10.5435/JAAOSGlobal-D-18-00071

[48]

Portalatín E.L., Carrazana L.F., Colon R., et al. Orthopaedic Surgeon Communication Skills: Perception of Empathy and Patient Satisfaction Through the Use of Anatomic Models // JAAOS: Global Research and Reviews. 2018. Vol. 2, № 11. Р. e07. doi: 10.5435/JAAOSGlobal-D-18-00071

[49]

Lou Y, Cai L, Wang C, et al. Comparison of traditional surgery and surgery assisted by three dimensional printing technology in the treatment of tibial plateau fractures. International Orthopaedics. 2017;41(9):1875–1880. doi: 10.1007/s00264-017-3445-y

[50]

Lou Y., Cai L., Wang C., et al. Comparison of traditional surgery and surgery assisted by three dimensional printing technology in the treatment of tibial plateau fractures // International Orthopaedics. 2017. Vol. 41, № 9. Р. 1875–1880. doi: 10.1007/s00264-017-3445-y

[51]

Won S-H, Lee Y-K, Ha Y-C, Suh Y-S, Koo K-H. Improving pre-operative planning for complex total hip replacement with a Rapid Prototype model enabling surgical simulation. The Bone & Joint Journal. 2013;95-В(11):1458–1463. doi: 10.1302/0301-620X.95B11.31878

[52]

Won S.-H., Lee Y.-K., Ha Y.-C., Suh Y.-S., Koo K.-H. Improving pre-operative planning for complex total hip replacement with a Rapid Prototype model enabling surgical simulation // The Bone & Joint Journal. 2013. Vol. 95-В, № 11. Р. 1458–1463. doi: 10.1302/0301-620X.95B11.31878

[53]

Rong X, Wang B, Chen H, et al. Use of rapid prototyping drill template for the expansive open door laminoplasty: A cadaveric study. Clin Neurol Neurosurg. 2016;150:13–7. doi: 10.1016/j.clineuro.2016.08.013

[54]

Rong X., Wang B., Chen H., et al. Use of rapid prototyping drill template for the expansive open door laminoplasty: A cadaveric study // Clin Neurol Neurosurg. 2016. Vol. 150. Р. 13–7. doi: 10.1016/j.clineuro.2016.08.013

[55]

Merema BJ, Kraeima J, Ten Duis K, et al. The design, production and clinical application of 3D patient-specific implants with drilling guides for acetabular surgery. Injury. 2017;48(11):2540–7. doi: 10.1016/j.injury.2017.08.059

[56]

Merema B.J., Kraeima J., Ten Duis K., et al. The design, production and clinical application of 3D patient-specific implants with drilling guides for acetabular surgery // Injury. 2017. Vol. 48, № 11. Р. 2540–7. doi: 10.1016/j.injury.2017.08.059

[57]

Cho W, Job AV, Chen J, Baek JH. A review of current clinical applications of three-dimensional printing in spine surgery. Asian Spine J. 2018;12(1):171–7. doi: 10.4184/asj.2018.12.1.171

[58]

Cho W., Job A.V., Chen J., Baek J.H. A review of current clinical applications of three-dimensional printing in spine surgery // Asian Spine J. 2018. Vol. 12, № 1. Р. 171–7. doi: 10.4184/asj.2018.12.1.171

[59]

Buijze GA, Leong NL, Stockmans F, et al. Three-dimensional compared with two-dimensional preoperative planning of corrective osteotomy for extra-articular distal radial malunion: A multicenter randomized controlled trial. J Bone Joint Surg Am. 2018;100(14):1191–202. doi: 10.2106/JBJS.17.00544

[60]

Buijze G.A., Leong N.L., Stockmans F., et al. Three-dimensional compared with two-dimensional preoperative planning of corrective osteotomy for extra-articular distal radial malunion: A multicenter randomized controlled trial // J Bone Joint Surg Am. 2018. Vol. 100, № 14. Р. 1191–202. doi: 10.2106/JBJS.17.00544

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/