Clinical and pathogenetic significance of the microvascular component of bone tissue
Anastasia A. Agafonova , Alexander I. Krupatkin , Alexander I. Dorokhin
N.N. Priorov Journal of Traumatology and Orthopedics ›› 2023, Vol. 30 ›› Issue (3) : 357 -366.
Clinical and pathogenetic significance of the microvascular component of bone tissue
Bone tissue’s blood circulation and microcirculation are critical to its metabolic and reparative processes. Without the participation of the bone microcirculatory tissue system, it is difficult to exchange oxygen and carbon dioxide, transport of nutrients, and excrete metabolic products. The regeneration of bone tissue is characterized by the pairing of angiogenesis and osteogenesis, which allows the use of microcirculation indicators as additional criteria for the state of reparative processes. Non-invasive approaches for detecting the state of peripheral circulation and microcirculation, which would enable assessing the dynamics of the vascular factor in bone pathology, including after fractures, are most practical in the clinic.
microcirculation / bone tissue / regeneration / laser Doppler flowmetry / optical systems / high-frequency dopplerography
| [1] |
Prisby RD. Bone Marrow Microvasculature. Compr Physiol. 2020;10(3):1009–1046. doi: 10.1002/cphy.c190009 |
| [2] |
Prisby R.D. Bone Marrow Microvasculature // Compr Physiol. 2020. Vol. 10, № 3. Р. 1009–1046. doi: 10.1002/cphy.c190009 |
| [3] |
Abboud C. Human bone marrow microvascular endothelial cells: Elusive cells with unique structural and functional properties. Exp Hematol. 1995;23(1):1–3. |
| [4] |
Abboud C. Human bone marrow microvascular endothelial cells: Elusive cells with unique structural and functional properties // Exp Hematol. 1995. Vol. 23, № 1. Р. 1–3. |
| [5] |
Morikawa T, Tamaki S, Fujita S, Suematsu M, Takubo K. Identification and local manipulation of bone marrow vasculature during intravital imaging. Scientific Reports. 2020;10(1):6422. doi: 10.1038/s41598-020-63533-3 |
| [6] |
Morikawa T., Tamaki S., Fujita S., Suematsu M., Takubo K. Identification and local manipulation of bone marrow vasculature during intravital imaging // Scientific Reports. 2020. Vol. 10, № 1. Р. 6422. doi: 10.1038/s41598-020-63533-3 |
| [7] |
Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, Zhao Z, Luby-Phelps K, Morrison SJ. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature. 2015;526(7571):126–130. doi: 10.1038/nature15250 |
| [8] |
Acar M., Kocherlakota K.S., Murphy M.M., Peyer J.G., Oguro H., Inra C.N., Zhao Z., Luby-Phelps K., Morrison S.J. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal // Nature. 2015. Vol. 526, № 7571. Р. 126–130. doi: 10.1038/nature15250 |
| [9] |
De Saint-Georges L, Miller SC. The microcirculation of bone and marrow in the diaphysis of the rat hemopoietic long bones. Anat Rec. 1992;233(2):169–177. doi: 10.1002/ar.1092330202 |
| [10] |
De Saint-Georges L., Miller S.C. The microcirculation of bone and marrow in the diaphysis of the rat hemopoietic long bones // Anat Rec. 1992. Vol. 233, № 2. Р. 169–177. doi: 10.1002/ar.1092330202 |
| [11] |
Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323–328. doi: 10.1038/nature13145 |
| [12] |
Kusumbe A.P., Ramasamy S.K., Adams R.H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone // Nature. 2014. Vol. 507, № 7492. Р. 323–328. doi: 10.1038/nature13145 |
| [13] |
Asghar A, Kumar A, Narayan RK, Naaz S. Is the cortical capillary renamed as the transcortical vessel in diaphyseal vascularity? Anat Rec (Hoboken). 2020;303(11):2774–2784. doi: 10.1002/ar.24461 |
| [14] |
Asghar A., Kumar A., Narayan R.K., Naaz S. Is the cortical capillary renamed as the transcortical vessel in diaphyseal vascularity? // Anat Rec (Hoboken). 2020. Vol. 303, № 11. Р. 2774–2784. doi: 10.1002/ar.24461 |
| [15] |
Xu Z, Kusumbe AP, Cai H, Wan Q, Chen J. Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering. Theranostics. 2020;10(1):426–436. doi: 10.7150/thno.34126.eCollection 2020 |
| [16] |
Xu Z., Kusumbe A.P., Cai H., Wan Q., Chen J. Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering // Theranostics. 2020. Vol. 10, № 1. Р. 426–436. doi: 10.7150/thno.34126.eCollection 2020 |
| [17] |
Ramasamy SK, Kusumbe AP, Itkin T, Gur-Cohen S, Lapidot T, Adams RH. Regulation of hematopoiesis and osteogenesis by blood vessel-derivedsignals. Annu Rev Cell Dev Biol. 2016;(32):649–675. doi: 10.1146/annurev-cellbio-111315-124936 |
| [18] |
Ramasamy S.K., Kusumbe A.P., Itkin T., Gur-Cohen S., Lapidot T., Adams R.H. Regulation of hematopoiesis and osteogenesis by blood vessel-derivedsignals // Annu Rev Cell Dev Biol. 2016. № 32. Р. 649–675. doi: 10.1146/annurev-cellbio-111315-124936 |
| [19] |
Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, Gunzer M. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1(2):236–250. doi: 10.1038/s42255-018-0016-5 |
| [20] |
Grüneboom A., Hawwari I., Weidner D., Culemann S., Müller S., Henneberg S., Gunzer M. A network of trans-cortical capillaries as mainstay for blood circulation in long bones // Nat Metab. 2019. Vol. 1, № 2. Р. 236–250. doi: 10.1038/s42255-018-0016-5 |
| [21] |
Qin Q, Lee S, Patel N, Walden K, Gomes-Salazar M, Levi B, James AW. Neurovascular coupling in bone regeneration. Exp Mol Med. 2022;54(11):1844–1849. doi: 10.1038/s12276-022-00899-6 |
| [22] |
Qin Q., Lee S., Patel N., Walden K., Gomes-Salazar M., Levi B., James A.W. Neurovascular coupling in bone regeneration // Exp Mol Med. 2022. Vol. 54, № 11. Р. 1844–1849. doi: 10.1038/s12276-022-00899-6 |
| [23] |
Panin MA, Zagorodny NV, Abakirov MD, Boyko AV, Ananyin DA. Decompression of the femoral head necrosis focus. Literature review. N.N. Priorov Journal of Traumatology and Orthopedics. 2021;28(1):65−76. (In Russ). doi: 10.17816/vto59746 |
| [24] |
Панин М.А., Загородний Н.В., Абакиров М.Д., Бойко А.В., Ананьин Д.А. Декомпрессия очага некроза головки бедренной кости. Обзор литературы // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2021. Т. 28, № 1. С. 65−76. doi: 10.17816/vto59746 |
| [25] |
Stegen S, Carmeliet G. The skeletal vascular system — Breathing life into bone tissue. Bone. 2018;(115):50–58. doi: 10.1016/j.bone.2017.08.022 |
| [26] |
Stegen S., Carmeliet G. The skeletal vascular system — Breathing life into bone tissue // Bone. 2018. № 115. Р. 50–58. doi: 10.1016/j.bone.2017.08.022 |
| [27] |
Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: the cellular picture. Semin. Cell Dev. Biol. 2008;19(5):459–466. doi: 10.1016/j.semcdb.2008.07.004 |
| [28] |
Schindeler A., McDonald M.M., Bokko P., Little D.G. Bone remodeling during fracture repair: the cellular picture // Semin Cell Dev Biol. 2008. Vol. 19, № 5. Р. 459–466. doi: 10.1016/j.semcdb.2008.07.004 |
| [29] |
Street J, Winter D, Wang JH, Wakai A, McGuinness A, Redmond HP. Is human fracture hematoma inherently angiogenic? Clin. Orthop. Relat. Res. 2000;(378):224–237. doi: 10.1097/00003086-200009000-00033 |
| [30] |
Street J., Winter D., Wang J.H., Wakai A., McGuinness A., Redmond H.P. Is human fracture hematoma inherently angiogenic? // Clin Orthop Relat Res. 2000. № 378. Р. 224–237. doi: 10.1097/00003086-200009000-00033 |
| [31] |
Sivaraj KK, Adams RH. Blood vessel formation and function in bone. Development. 2016;143(15):2706–2715. doi: 10.1242/dev.136861 |
| [32] |
Sivaraj K.K., Adams R.H. Blood vessel formation and function in bone // Development. 2016. Vol. 143, № 15. Р. 2706–2715. doi: 10.1242/dev.136861 |
| [33] |
Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, Xu J. Angiogenic factors in bone local environment. Cytokine and Growth Factor Reviews. 2013;24(3):297–310. doi: 10.1016/j.cytogfr.2013.03.008 |
| [34] |
Chim S.M., Tickner J., Chow S.T., Kuek V., Guo B., Zhang G., Xu J. Angiogenic factors in bone local environment // Cytokine and Growth Factor Reviews. 2013. Vol. 24, № 3. Р. 297–310. doi: 10.1016/j.cytogfr.2013.03.008 |
| [35] |
Street J, Bao M, Guzman L, Bunting S, Peale FV, Ferrara N. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U. S. A. 2002;99(15):9656–9661. doi: 10.1073/pnas.152324099 |
| [36] |
Street J., Bao M., Guzman L., Bunting S., Peale F.V., Ferrara N. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover // Proc Natl Acad Sci U. S. A. 2002. Vol. 99, № 15. Р. 9656–9661. doi: 10.1073/pnas.152324099 |
| [37] |
Maes C, Carmeliet G, Schipani E. Hypoxia-driven pathways in bone development,regeneration and disease. Nat Rev Rheumatol. 2012;8(6):358–366. doi: 10.1038/nrrheum.2012.3 |
| [38] |
Maes C., Carmeliet G., Schipani E. Hypoxia-driven pathways in bone development, regeneration and disease // Nat Rev Rheumatol. 2012. Vol. 8, № 6. Р. 358–366. doi: 10.1038/nrrheum.2012.3 |
| [39] |
Meertens R, Casanova F, Knapp KM, Thorn C, Strain WD. Use of near-infrared systems for investigations of hemodynamics in human in vivo bone tissue: A systematic review. J Orthop Res. 2018;36(10):2595–2603. doi: 10.1002/jor.24035 |
| [40] |
Meertens R., Casanova F., Knapp K.M., Thorn C., Strain W.D. Use of near-infrared systems for investigations of hemodynamics in human in vivo bone tissue: A systematic review // J Orthop Res. 2018. Vol. 36. № 10. Р. 2595–2603. doi: 10.1002/jor.24035 |
| [41] |
Peng H, Wright V, Usas A, Gearhart B, Shen H, Cummin J, Huard J. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest. 2002;110(6):751–759. doi: 10.1172/JCI15153 |
| [42] |
Peng H., Wright V., Usas A., Gearhart B., Shen H., Cummin J., Huard J. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4 // J Clin Invest. 2002. Vol. 110, № 6. Р. 751–759. doi: 10.1172/JCI15153 |
| [43] |
Batpenov ND, Rakhimov SK, Stepanov AA, Orazbaev DA, Manekenova KB, Smilova GK. Morphofunctional bone tissue reconstruction in periprosthetic fractures in the area of the femoral component of the endoprosthesis. N.N. Priorov Journal of Traumatology and Orthopedics. 2020;27(2):24–29. (In Russ). doi: 10.17816/vto202027224-29 |
| [44] |
Батпенов Н.Д., Рахимов С.К., Степанов А.А., Оразбаев Д.А., Манекенова К.Б., Смайлова Г.К. Морфофункциональная перестройка костной ткани при перипротезных переломах в зоне бедренного компонента эндопротеза // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2020. Т. 27, № 2. С. 24–29. doi: 10.17816/vto202027224-29 |
| [45] |
Mironov SP, Eskin NA, Krupatkin AI, Kesyan GA, Urazgildeev RZ, Arsenyev IG. Pathophysiological aspects of soft tissue microhemocirculation in the projection of false joints of long bones. N.N. Priorov Journal of Traumatology and Orthopedics. 2012;(4):22–26. (In Russ). |
| [46] |
Миронов С.П., Еськин Н.А., Крупаткин А.И., Кесян Г.А., Уразгильдеев Р.З., Арсеньев И.Г. Патофизиологические аспекты микрогемоциркуляции мягких тканей в проекции ложных суставов длинных костей // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2012. № 4. С. 22–26. |
| [47] |
Patent RUS № 2501526/20.12.2013. Mironov SP, Eskin NA, Krupatkin AI, Kesyan GA, Urazgildeev RZ, Arsenyev IG. Sposob prognozirovaniya techeniya reparativnogo osteogeneza pri hirurgicheskom lechenii lozhnyh sustavov dlinnyh trubchatyh kostej. Available from: http://allpatents.ru/patent/2501526.html?ysclid=lloy82reqc265613020 (In Russ). |
| [48] |
Патент РФ на изобретение № 2501526/20.12.2013. Миронов С.П., Еськин Н.А., Крупаткин А.И., Кесян Г.А., Уразгильдеев Р.З., Арсеньев И.Г. Способ прогнозирования течения репаративного остеогенеза при хирургическом лечении ложных суставов длинных трубчатых костей. Режим доступа: http://allpatents.ru/patent/2501526.html?ysclid=lloy82reqc265613020 |
| [49] |
Shchurov VA. Dynamics of blood flow velocity through the arteries of bone regenerate limbs and cerebral blood flow when performing functional tests and changing the treatment regimen. Regional blood circulation and microcirculation. 2018;17(4):51–56. (In Russ). doi: 10.24884/1682-6655-2018-17-4-51-56 |
| [50] |
Щуров В.А. Динамика скорости кровотока по артериям костного регенерата конечностей и мозгового кровотока при выполнении функциональных проб и изменении режима лечения // Регионарное кровообращение и микроциркуляция. 2018. Т. 17, № 4. С. 51–56. doi: 10.24884/1682-6655-2018-17-4-51-56 |
| [51] |
Pisarev VV, Lvov SE, Vasin IV. Indicators of regional hemodynamics of the early postoperative period in osteosynthesis of fractures of the lower leg bones. Bulletin of the Ivanovo Medical Academy. 2012;17(4):34–37. (In Russ). |
| [52] |
Писарев В.В., Львов С.Е., Васин И.В. Показатели регионарной гемодинамики раннего послеоперационного периода при остеосинтезе переломов костей голени // Вестник Ивановской медицинской академии. 2012. Т. 17, № 4. С. 34–37. |
| [53] |
Aziz SM, Khambatta F, Vaithianathan T, Thomas JC, Clark JM, Marshall R. A near infrared instrument to monitor relative hemoglobin concentrations of human bone tissue in vitro and in vivo. Rev Sci Instrum. 2010;81(4):043111. doi: 10.1063/1.3398450 |
| [54] |
Aziz S.M., Khambatta F., Vaithianathan T., Thomas J.C., Clark J.M., Marshall R. A near infrared instrument to monitor relative hemoglobin concentrations of human bone tissue in vitro and in vivo // Rev Sci Instrum. 2010. Vol. 81, № 4. Р. 043111. doi: 10.1063/1.3398450 |
| [55] |
Ganse B, Bohle F, Pastor T, Gueorguiev B, Altgassen S, Gradl G, Kim B, Modabber A, Nebelung S, Hildebrand F, Knobe M. Microcirculation after trochanteric femur fractures: a prospective cohort study using non-invasive laser-doppler spectrophotometry. Front Physiol. 2019;(10):236. doi: 10.3389/fphys.2019.00236 |
| [56] |
Ganse B., Bohle F., Pastor T., Gueorguiev B., Altgassen S., Gradl G., Kim B., Modabber A., Nebelung S. Hildebrand F., Knobe M. Microcirculation after trochanteric femur fractures: a prospective cohort study using non-invasive laser-doppler spectrophotometry // Front Physiol. 2019. № 10. Р. 236. doi: 10.3389/fphys.2019.00236 |
| [57] |
Hughes SS, Cammarata A, Steinmann SP, Pellegrini VD. Effect of standard total knee arthroplasty surgical dissection on human patellar blood flow in vivo: an investigation using laser doppler flowmetry. J South Orthop Assoc. 1998;7(3):198–204. |
| [58] |
Hughes S.S., Cammarata A., Steinmann S.P., Pellegrini V.D. Effect of standard total knee arthroplasty surgical dissection on human patellar blood flow in vivo: an investigation using laser doppler flowmetry // J South Orthop Assoc. 1998. Vol. 7, № 3. Р. 198–204. |
| [59] |
Nicholls RL, Green D, Kuster MS. Patella intraosseous blood flow disturbance during a medial or lateral arthrotomy in total knee arthroplasty: a laser Doppler flowmetry study. Knee Surg Sports Traumatol Arthrosc. 2006;14(5):411–416. doi: 10.1007/s00167-005-0703-0 |
| [60] |
Nicholls R.L., Green D., Kuster M.S. Patella intraosseous blood flow disturbance during a medial or lateral arthrotomy in total knee arthroplasty: a laser Doppler flowmetry study // Knee Surg Sports Traumatol Arthrosc. 2006. Vol. 14, № 5. Р. 411–416. doi: 10.1007/s00167-005-0703-0 |
| [61] |
Cai ZG, Zhang J, Zhang JG, Zhao FY, Yu GY, Li Y, Ding HS. Evaluation of near infrared spectroscopy in monitoring postoperative regional tissue oxygen saturation for fibular flaps. J Plast Reconstr Aesthet Surg. 2008;61(3):289–96. doi: 10.1016/j.bjps.2007.10.047 |
| [62] |
Cai Z.G., Zhang J., Zhang J.G., Zhao F.Y., Yu G.Y., Li Y., Ding H.S. Evaluation of near infrared spectroscopy in monitoring postoperative regional tissue oxygen saturation for fibular flaps // J Plast Reconstr Aesthet Surg. 2008. Vol. 61, № 3. Р. 289–96. doi: 10.1016/j.bjps.2007.10.047 |
| [63] |
Duwelius PJ, Schmidt AH. Assessment of bone viability in patients with osteomyelitis: preliminary clinical experience with laser Doppler flowmetry. J Orthop Trauma. 1992;6(3):327–332. doi: 10.1097/00005131-199209000-00010 |
| [64] |
Duwelius P.J., Schmidt A.H. Assessment of bone viability in patients with osteomyelitis: preliminary clinical experience with laser Doppler flowmetry // J Orthop Trauma. 1992. Vol. 6, № 3. Р. 327–332. doi: 10.1097/00005131-199209000-00010 |
| [65] |
Beaule PE, Campbell P, Shim P. Femoral head blood flow during hip resurfacing. Clin Orthop Relat Res. 2007;(456):148–152. doi: 10.1097/01.blo.0000238865.77109.af |
| [66] |
Beaule P.E., Campbell P., Shim P. Femoral head blood flow during hip resurfacing // Clin Orthop Relat Res. 2007. № 456. Р. 148–152. doi: 10.1097/01.blo.0000238865.77109.af |
| [67] |
Bassett GS, Barton KL, Skaggs DL. Laser Doppler flowmetry during open reduction for developmental dysplasia of the hip. Clin Orthop Relat Res. 1997;(340):158–164. doi: 10.1097/00003086-199707000-00020 |
| [68] |
Bassett G.S., Barton K.L., Skaggs D.L. Laser Doppler flowmetry during open reduction for developmental dysplasia of the hip // Clin Orthop Relat Res. 1997. № 340. Р. 158–164. doi: 10.1097/00003086-199707000-00020 |
| [69] |
Meertens R, Knapp K, Strain D, Casanova F, Ball S, Fulford J, Thorn C. In vivo Measurement of Intraosseous Vascular Haemodynamic Markers in Human Bone Tissue Utilising Near Infrared Spectroscopy. Front Physiol. 2021;(12):738239. doi: 10.3389/fphys.2021.738239 |
| [70] |
Meertens R., Knapp K., Strain D., Casanova F., Ball S., Fulford J., Thorn C. In vivo Measurement of Intraosseous Vascular Haemodynamic Markers in Human Bone Tissue Utilising Near Infrared Spectroscopy // Front Physiol. 2021. № 12. Р. 738239. doi: 10.3389/fphys.2021.738239 |
| [71] |
Krupatkin AI. Oscillatory processes and diagnostics of the state of microcirculatory and tissue systems. Regional blood circulation and microcirculation. 2018;17(3):4. (In Russ). |
| [72] |
Крупаткин А.И. Колебательные процессы и диагностика состояния микроциркуляторно-тканевых систем // Регионарное кровообращение и микроциркуляция. 2018. Т. 17, № 3. С. 4. |
| [73] |
Krupatkin AI. Fluctuations of blood flow — a new diagnostic language in the study of microcirculation. Regional blood circulation and microcirculation. 2014;13(1):83–99. (In Russ). doi: 10.24884/1682-6655-2014-13-1-83-99 |
| [74] |
Крупаткин А.И. Колебания кровотока — новый диагностический язык в исследовании микроциркуляции // Регионарное кровообращение и микроциркуляция. 2014. Т. 13, № 1. С. 83–99. doi: 10.24884/1682-6655-2014-13-1-83-99 |
| [75] |
Patent RUS № 2514110/27.04.2014. Mironov SP, Krupatkin AI, Kesyan GA, Urazgildeev RZ, Dan IM, Arsenyev IG. Sposob opredeleniya stepeni metabolicheskoj zrelosti geterotopicheskih ossifikatov pered ih hirurgicheskim lecheniem. Available from: https://yandex.ru/patents/doc/RU2514110C1_20140427?ysclid=lloz22zi55248599167 (In Russ). |
| [76] |
Патент РФ на изобретение № 2514110/27.04.2014. Миронов С.П., Крупаткин А.И., Кесян Г.А., Уразгильдеев Р.З., Дан И.М., Арсеньев И.Г. Способ определения степени метаболической зрелости гетеротопических оссификатов перед их хирургическим лечением. Режим доступа: https://yandex.ru/patents/doc/RU2514110C1_20140427?ysclid=lloz22zi55248599167 |
| [77] |
Vekovtsev AA, Tohirien B, Slizovsky GV, Poznyakovsky VM. Clinical trials of vitamin and mineral complex for the treatment of children with a traumatological profile. Bulletin of the VGUIT. 2019;81(2):147–153. (In Russ). doi: 10.20914/2310-1202-2019-2-147-153 |
| [78] |
Вековцев А.А., Тохириён Б., Слизовский Г.В., Позняковский В.М. Клинические испытания витаминно-минерального комплекса для лечения детей с травматологическим профилем // Вестник ВГУИТ. 2019. Т. 81, № 2. С. 147–153. doi: 10.20914/2310-1202-2019-2-147-153 |
| [79] |
Dorokhin AI, Krupatkin AI, Adrianova AA, Khudik VI, Sorokin DS, Kuryshev DA, Bukchin LB. Closed fractures of the distal tibia. A variety of forms and treatments (using the example of older age groups). Immediate results. Physical and rehabilitation medicine, medical rehabilitation. 2021;3(1):11–23. (In Russ). doi: 10.36425/rehab63615 |
| [80] |
Дорохин А.И., Крупаткин А.И., Адрианова А.А., Худик В.И., Сорокин Д.С., Курышев Д.А., Букчин Л.Б. Закрытые переломы дистального отдела костей голени. Разнообразие форм и лечения (на примере старших возрастных групп). Ближайшие результаты // Физическая и реабилитационная медицина, медицинская реабилитация. 2021. Т. 3, № 1. С. 11–23. doi: 10.36425/rehab63615 |
| [81] |
Baker WB, Parthasarathy AB, Busch DR, Mesquita RC, Greenberg JH, Yodh AG. Modified Beer-Lambert law for blood flow. Biomed Opt Express. 2014;5(11):4053–75. doi: 10.1364/BOE.5.004053 |
| [82] |
Baker W.B., Parthasarathy A.B., Busch D.R., Mesquita R.C., Greenberg J.H., Yodh A.G. Modified Beer-Lambert law for blood flow // Biomed Opt Express. 2014. Vol. 5, № 11. Р. 4053–75. doi: 10.1364/BOE.5.004053 |
| [83] |
Bläsius FM, Link BC, Beeres FJ, Iselin LD, Leu BM, Gueorguiev B, Knobe M. Impact of surgical procedures on soft tissue microcirculation in calcaneal fractures: a prospective longitudinal cohort study. Injury. 2019;50(12):2332–2338. doi: 10.1016/j.injury.2019.10.004 |
| [84] |
Bläsius F.M., Link B.C., Beeres F.J., Iselin L.D., Leu B.M., Gueorguiev B., Knobe M. Impact of surgical procedures on soft tissue microcirculation in calcaneal fractures: a prospective longitudinal cohort study // Injury. 2019. Vol. 50, № 12. Р. 2332–2338. doi: 10.1016/j.injury.2019.10.004 |
| [85] |
Becker RL, Siamwala JH, Macias BR, Hargens AR. Tibia Bone Microvascular Flow Dynamics as Compared to Anterior Tibial Artery Flow During Body Tilt. Aerospace Medicine and Human Performance. 2018;89(4):357–364. doi: 10.3357/amhp.4928.2018 |
| [86] |
Becker R.L., Siamwala J.H., Macias B.R., Hargens A.R. Tibia Bone Microvascular Flow Dynamics as Compared to Anterior Tibial Artery Flow During Body Tilt // Aerospace Medicine and Human Performance. 2018. Vol. 89, № 4. Р. 357–364. doi: 10.3357/amhp.4928.2018 |
| [87] |
Pifferi A, Torricelli A, Taroni P, Bassi A, Chikoidze E, Giambattistelli E, Cubeddu R. Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies. J Biomed Opt. 2004;9(3):474–80. doi: 10.1117/1.1691029 |
| [88] |
Pifferi A., Torricelli A., Taroni P., Bassi A., Chikoidze E., Giambattistelli E., Cubeddu R. Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies // J Biomed Opt. 2004. Vol. 9, № 3. Р. 474–80. doi: 10.1117/1.1691029 |
| [89] |
Sekar SV, Pagliazzi M, Negredo E, Martelli F, Farina A, Dalla Mora A, Lindner C, Farzam P, Perez-Alvarez N, Puig J, Taroni P, Pifferi A, Durduran T. In vivo, non-invasive characterization of human bone by hybrid broadband (600–1200 nm) diffuse optical and correlation spectroscopies. PLoS One. 2016;11(12):e0168426. doi: 10.1371/journal.pone.0168426 |
| [90] |
Sekar S.V., Pagliazzi M., Negredo E., Martelli F., Farina A., Dalla Mora A., Lindner C., Farzam P., Perez-Alvarez N., Puig J., Taroni P., Pifferi A., Durduran T. In vivo, non-invasive characterization of human bone by hybrid broadband (600–1200 nm) diffuse optical and correlation spectroscopies // PLoS One. 2016. Vol. 11, № 12. Р. e0168426. doi: 10.1371/journal.pone.0168426 |
| [91] |
Naslund J, Pettersson J, Lundeberg T, Linnarsson D, Lindberg LG. Noninvasive continuous estimation of blood flow changes in human patellar bone. Med Biol Eng Comput. 2006;44(6):501–9. doi: 10.1007/s11517-006-0070-0 |
| [92] |
Naslund J., Pettersson J., Lundeberg T., Linnarsson D., Lindberg L.G. Noninvasive continuous estimation of blood flow changes in human patellar bone // Med Biol Eng Comput. 2006. Vol. 44, № 6. Р. 501–9. doi: 10.1007/s11517-006-0070-0 |
| [93] |
Siamwala JH, Lee PC, Macias BR, Hargens AR. Lower-body negative pressure restores leg bone microvascular flow to supine levels during head-down tilt. J Appl Physiol. 2015;119(2):101–9. doi: 10.1152/japplphysiol.00028.2015 |
| [94] |
Siamwala J.H., Lee P.C., Macias B.R., Hargens A.R. Lower-body negative pressure restores leg bone microvascular flow to supine levels during head-down tilt // J Appl Physiol. 2015. Vol. 119, № 2. Р. 101–9. doi: 10.1152/japplphysiol.00028.2015 |
| [95] |
Mateus J, Hargens AR. Photoplethysmography for non-invasive in vivo measurement of bone hemodynamics. Physiol Meas. 2012;33(6):1027–1042. doi: 10.1088/0967-3334/33/6/1027 |
| [96] |
Mateus J., Hargens A.R. Photoplethysmography for non-invasive in vivo measurement of bone hemodynamics // Physiol Meas. 2012. Vol. 33, № 6. Р. 1027–1042. doi: 10.1088/0967-3334/33/6/1027 |
Eco-Vector
/
| 〈 |
|
〉 |