Regenerative medicine and orthobiological drugs possibilities in upper limb diseases treatment: Literature review

Anastasiya I. Greben , Petr S. Eremin , Juliya V. Byalik , Elena Yu. Kostromina , Gajk K. Parsadanyan , Pavel A. Markov , Aleksei V. Afanasiev , Tatiana N. Greben

N.N. Priorov Journal of Traumatology and Orthopedics ›› 2023, Vol. 30 ›› Issue (1) : 111 -126.

PDF
N.N. Priorov Journal of Traumatology and Orthopedics ›› 2023, Vol. 30 ›› Issue (1) : 111 -126. DOI: 10.17816/vto322818
SCIENTIFIC REVIEWS
review-article

Regenerative medicine and orthobiological drugs possibilities in upper limb diseases treatment: Literature review

Author information +
History +
PDF

Abstract

The analyses of regenerative medicine progress, stem cell biology, and platelet rich plasma growth factor mechanisms of action have pushed many researchers to use orthobiological drugs in their clinical practice. This review aimed to present the use of regenerative techniques and orthobiological drugs in the treatment of upper limb diseases. The open electronic database of PubMed (MEDLINE) was used in the search for scientific studies. The literature search was conducted using the keywords «regenerative medicine», «orthobiology», «hand», «wrist joint», «platelet rich plasma», «mesenchymal stem cells», and «stromal-vascular function». The article presents the results and rationale of the use of orthobiological drugs in the treatment of various hand and upper limb pathologies. The use of orthobiological drugs and regenerative techniques in the treatment of upper limb diseases is a safe and promising direction. For the subsequent use of effective cell products, further research is needed to assess their long-term results and development of unified protocols for their use.

Keywords

regenerative medicine / orthobiology / hand / wrist / platelet rich plasma / mesenchymal stem cells / stromal-vascular function

Cite this article

Download citation ▾
Anastasiya I. Greben, Petr S. Eremin, Juliya V. Byalik, Elena Yu. Kostromina, Gajk K. Parsadanyan, Pavel A. Markov, Aleksei V. Afanasiev, Tatiana N. Greben. Regenerative medicine and orthobiological drugs possibilities in upper limb diseases treatment: Literature review. N.N. Priorov Journal of Traumatology and Orthopedics, 2023, 30(1): 111-126 DOI:10.17816/vto322818

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Coombes BK, Bisset L, Vicenzino B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials. Lancet. 2010;376(9754):1751–1767. doi: 10.1016/S0140-6736(10)61160-9

[2]

Coombes B.K., Bisset L., Vicenzino B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials // Lancet. 2010. Vol. 376, N 9754. P. 1751–1767. doi: 10.1016/S0140-6736(10)61160-9

[3]

Khanna A, Friel M, Gougoulias N, et al. Prevention of adhesions in surgery of the flexor tendons of the hand: what is the evidence? Br Med Bull. 2009;90:85–109. doi: 10.1093/bmb/ldp013

[4]

Khanna A., Friel M., Gougoulias N., et al. Prevention of adhesions in surgery of the flexor tendons of the hand: what is the evidence? // Br Med Bull. 2009. N 90. P. 85–109. doi: 10.1093/bmb/ldp013

[5]

Piazzini DB, Aprile I, Ferrara PE, et al. A systematic review of conservative treatment of carpal tunnel syndrome. Clin Rehabil. 2016;21(4):299–314. doi: 10.1177/0269215507077294

[6]

Piazzini D.B., Aprile I., Ferrara P.E., et al. A systematic review of conservative treatment of carpal tunnel syndrome // Clin Rehabil. 2016. Vol. 21, N 4. P. 299–314. doi: 10.1177/0269215507077294

[7]

Tsuji W, Rubin JP, Marra KG. Adipose-derived stem cells: Implications in tissue regeneration. World J Stem Cells. 2014;6(3):312–321. doi: 10.4252/wjsc.v6.i3.312

[8]

Tsuji W., Rubin J.P., Marra K.G. Adipose-derived stem cells: Implications in tissue regeneration // World J Stem Cells. 2014. Vol. 6, N 3. P. 312–321. doi: 10.4252/wjsc.v6.i3.312

[9]

Ramesh R, Jeyaraman M, Prajwal GS. The prospective study on efficacy and functional outcome of autologous platelet rich plasma injection in musculoskeletal disorders. EC Orthopaedics. 2018;9(12):849e863.

[10]

Ramesh R., Jeyaraman M., Prajwal G.S. The prospective study on efficacy and functional outcome of autologous platelet rich plasma injection in musculoskeletal disorders // EC Orthopaedics. 2018. Vol. 9, N 12. P. 849e863.

[11]

Yeh KT, Wu WT, Wang JH, Shih JT. Arthroscopic foveal repair with suture anchors for traumatic tears of the triangular fibrocartilage complex. BMC Musculoskelet Disord. 2022;23(1):634. doi: 10.1186/s12891-022-05588-z

[12]

Yeh K.T., Wu W.T., Wang J.H., Shih J.T. Arthroscopic foveal repair with suture anchors for traumatic tears of the triangular fibrocartilage complex // BMC Musculoskelet Disord. 2022. Vol. 23, N 1. P. 634. doi: 10.1186/s12891-022-05588-z

[13]

Karim KE, Wu CM, Giladi AM, Murphy MS. Orthobiologics in Hand Surgery. J Hand Surg Am. 2021;46(5):409–415. doi: 10.1016/j.jhsa.2021.01.006

[14]

Karim K.E., Wu C.M., Giladi A.M., Murphy M.S. Orthobiologics in Hand Surgery // J Hand Surg Am. 2021. Vol. 46, N 5. P. 409–415. doi: 10.1016/j.jhsa.2021.01.006

[15]

Oh JK, Messing S, Hyrien O, Hammert WC. Effectiveness of Corticosteroid Injections for Treatment of de Quervain’s Tenosynovitis. Hand (N Y). 2017;12(4):357–361. doi: 10.1177/1558944716681976

[16]

Oh J.K., Messing S., Hyrien O., Hammert W.C. Effectiveness of Corticosteroid Injections for Treatment of de Quervain’s Tenosynovitis // Hand (N Y). 2017. Vol. 12, N 4. P. 357–361. doi: 10.1177/1558944716681976

[17]

Ippolito JA, Hauser S, Patel J, et al. Nonsurgical Treatment of De Quervain Tenosynovitis: A Prospective Randomized Trial. Hand (N Y). 2020;15(2):215–219. doi: 10.1177/1558944718791187

[18]

Ippolito J.A., Hauser S., Patel J., et al. Nonsurgical Treatment of De Quervain Tenosynovitis: A Prospective Randomized Trial // Hand (N Y). 2020. Vol. 15, N 2. P. 215–219. doi: 10.1177/1558944718791187

[19]

Zhang J, Nie D, Williamson K, et al. Selectively activated PRP exerts differential effects on tendon stem/progenitor cells and tendon healing. J Tissue Eng. 2019;10:2041731418820034. doi: 10.1177/2041731418820034

[20]

Zhang J., Nie D., Williamson K., et al. Selectively activated PRP exerts differential effects on tendon stem/progenitor cells and tendon healing // J Tissue Eng. 2019. N 10. P. 2041731418820034. doi: 10.1177/2041731418820034

[21]

Everts P, Onishi K, Jayaram P, et al. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci. 2020;21(20):7794. doi: 10.3390/ijms21207794

[22]

Everts P., Onishi K., Jayaram P., et al. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020 // Int J Mol Sci. 2020. Vol. 21, N 20. P. 7794. doi: 10.3390/ijms21207794

[23]

Peck E, Ely E. Successful treatment of de Quervain tenosynovitis with ultrasound-guided percutaneous needle tenotomy and platelet trich plasma injection: a case presentation. PM R. 2013;5(5):438–441. doi: 10.1016/j.pmrj.2013.02.006

[24]

Peck E., Ely E. Successful treatment of de Quervain tenosynovitis with ultrasound-guided percutaneous needle tenotomy and platelet trich plasma injection: a case presentation // PM R. 2013. Vol. 5, N 5. P. 438–441. doi: 10.1016/j.pmrj.2013.02.006

[25]

Leppanen OV, Karjalainen T, Goransson H, et al. Outcomes after flexor tendon repair combined with the application of human amniotic membrane allograft. J Hand Surg Am. 2017;42(6):474.e1–474.e8. doi: 10.1016/j.jhsa.2017.03.006

[26]

Leppanen O.V., Karjalainen T., Goransson H., et al. Outcomes after flexor tendon repair combined with the application of human amniotic membrane allograft // J Hand Surg Am. 2017. Vol. 42, N 6. P. 474.e1–474.e8. doi: 10.1016/j.jhsa.2017.03.006

[27]

Golash A, Kay A, Warner JG, et al. Efficacy of ADCON-T/N after primary flexor tendon repair in Zone II: a controlled clinical trial. J Hand Surg Br. 2003;28(2):113–115. doi: 10.1016/s0266-7681(02)00249-8

[28]

Golash A., Kay A., Warner J.G., et al. Efficacy of ADCON-T/N after primary flexor tendon repair in Zone II: a controlled clinical trial // J Hand Surg Br. 2003. Vol. 28, N 2. P. 113–115. doi: 10.1016/s0266-7681(02)00249-8

[29]

Lee YJ, Ryoo HJ, Shim HS. Prevention of postoperative adhesions after flexor tendon repair with acellular dermal matrix in Zones III, IV, and V of the hand: A randomized controlled (CONSORT-compliant) trial. Medicine (Baltimore). 2022;101(3):e28630. doi: 10.1097/MD.0000000000028630

[30]

Lee Y.J., Ryoo H.J., Shim H.S. Prevention of postoperative adhesions after flexor tendon repair with acellular dermal matrix in Zones III, IV, and V of the hand: A randomized controlled (CONSORT-compliant) trial // Medicine (Baltimore). 2022. Vol. 101, N 3. P. e28630. doi: 10.1097/MD.0000000000028630

[31]

Shim HS, Park KS, Kim SW. Preventing postoperative adhesions after hand tendon repair using acellular dermal matrix. J Wound Care. 2021;30(11):890–895. doi: 10.12968/jowc.2021.30.11.890

[32]

Shim H.S., Park K.S., Kim S.W. Preventing postoperative adhesions after hand tendon repair using acellular dermal matrix // J Wound Care. 2021. Vol. 30, N 11. P. 890–895. doi: 10.12968/jowc.2021.30.11.890

[33]

Liu C, Bai J, Yu K, et al. Biological Amnion Prevents Flexor Tendon Adhesion in Zone II: A Controlled, Multicentre Clinical Trial. Biomed Res Int. 2019;2019:2354325. doi: 10.1155/2019/2354325

[34]

Liu C., Bai J., Yu K., et al. Biological Amnion Prevents Flexor Tendon Adhesion in Zone II: A Controlled, Multicentre Clinical Trial // Biomed Res Int. 2019. N 2019. P. 2354325. doi: 10.1155/2019/2354325

[35]

Tarpada SP, Morris MT, Lian J, Rashidi S. Current advances in the treatment of medial and lateral epicondylitis. J Orthop. 2018;15(1):107–110. doi: 10.1016/j.jor.2018.01.040

[36]

Tarpada S.P., Morris M.T., Lian J., Rashidi S. Current advances in the treatment of medial and lateral epicondylitis // J Orthop. 2018. Vol. 15, N 1. P. 107–110. doi: 10.1016/j.jor.2018.01.040

[37]

Via AG, Frizziero A, Oliva F. Biological properties of mesenchymal Stem Cells from different sources. Muscles Ligaments Tendons J. 2012;2(3):154–162.

[38]

Via A.G., Frizziero A., Oliva F. Biological properties of mesenchymal Stem Cells from different sources // Muscles Ligaments Tendons J. 2012. Vol. 2, N 3. P. 154–162.

[39]

Halpern BC, Chaudhury S, Rodeo SA. The role of platelet-rich plasma in inducing musculoskeletal tissue healing. HSS J. 2012;8(2):137–145. doi: 10.1007/s11420-011-9239-7

[40]

Halpern B.C., Chaudhury S., Rodeo S.A. The role of platelet-Rich plasma in inducing musculoskeletal tissue healing // HSS J. 2012. Vol. 8, N 2. P. 137–145. doi: 10.1007/s11420-011-9239-7

[41]

Arora KK, Kapila R, Kapila S, et al. Management of Lateral Epicondylitis: A Prospective Comparative Study Comparing the Local Infiltrations of Leucocyte Enriched Platelet-Rich Plasma (L-aPRP), Glucocorticoid and Normal Saline. Malays Orthop J. 2022;16(1):58–69. doi: 10.5704/MOJ.2203.009

[42]

Arora K.K., Kapila R., Kapila S., et al. Management of Lateral Epicondylitis: A Prospective Comparative Study Comparing the Local Infiltrations of Leucocyte Enriched Platelet-Rich Plasma (L-aPRP), Glucocorticoid and Normal Saline // Malays Orthop J. 2022. Vol. 16, N 1. P. 58–69. doi: 10.5704/MOJ.2203.009

[43]

Singh A, Gangwar DS, Singh S. Bone marrow injection: a novel treatment for tennis elbow. J Nat Sci Biol Med. 2014;5(2):389–391. doi: 10.4103/0976-9668.136198

[44]

Singh A., Gangwar D.S., Singh S. Bone marrow injection: a novel treatment for tennis elbow // J Nat Sci Biol Med. 2014. Vol. 5, N 2. P. 389–391. doi: 10.4103/0976-9668.136198

[45]

Connell D, Datir A, Alyas F, Curtis M. Treatment of lateral epicondylitis using skin-derived tenocyte-like cells. Br J Sports Med. 2009;43(4):293–298. doi: 10.1136/bjsm.2008.056457

[46]

Connell D., Datir A., Alyas F., Curtis M. Treatment of lateral epicondylitis using skin-derived tenocyte-like cells // Br J Sports Med. 2009. Vol. 43, N 4. P. 293–298. doi: 10.1136/bjsm.2008.056457

[47]

Wang A, Mackie K, Breidahl W, et al. Evidence for the durability of autologous tenocyte injection for treatment of chronic resistant lateral epicondylitis: mean 4.5-Year clinical follow-up. Am J Sports Med. 2015;43(7):1775–1783. doi: 10.1177/0363546515579185

[48]

Wang A., Mackie K., Breidahl W., et al. Evidence for the durability of autologous tenocyte injection for treatment of chronic resistant lateral epicondylitis: mean 4.5-Year clinical follow-up // Am J Sports Med. 2015. Vol. 43, N 7. P. 1775–1783. doi: 10.1177/0363546515579185

[49]

Lee SY, Kim W, Lim C, Chung SG. Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: a pilot study. Stem Cells. 2015;33(10):2995–3005. doi: 10.1002/stem.2110

[50]

Lee S.Y., Kim W., Lim C., Chung S.G. Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: a pilot study // Stem Cells. 2015. Vol. 33, N 10. P. 2995–3005. doi: 10.1002/stem.2110

[51]

Khoury M, Tabben M, Rolón AU, et al. Promising improvement of chronic lateral elbow tendinopathy by using adipose derived mesenchymal stromal cells: a pilot study. J Exp Orthop. 2021;8(1):6. doi: 10.1186/s40634-020-00320-z

[52]

Khoury M., Tabben M., Rolón A.U., et al. Promising improvement of chronic lateral elbow tendinopathy by using adipose derived mesenchymal stromal cells: a pilot study // J Exp Orthop. 2021. Vol. 8, N 1. P. 6. doi: 10.1186/s40634-020-00320-z

[53]

Dolmans GH, Werker PM, Hennies HC, et al. Wnt signaling and Dupuytren’s disease. N Engl J Med. 2011;365(4):307–317. doi: 10.1056/NEJMoa1101029

[54]

Dolmans G.H., Werker P.M., Hennies H.C., et al. Wnt signaling and Dupuytren’s disease // N Engl J Med. 2011. Vol. 365, N 4. P. 307–317. doi: 10.1056/NEJMoa1101029

[55]

Coleman SR. Structural fat grafting: More than a permanent filler. Plast Reconstr Surg. 2006;118(3 Suppl):108S–120S. doi: 10.1097/01.prs.0000234610.81672.e7

[56]

Coleman S.R. Structural fat grafting: More than a permanent filler // Plast Reconstr Surg. 2006. Vol. 118, N 3, Suppl. P. 108S–120S. doi: 10.1097/01.prs.0000234610.81672.e7

[57]

Hovius SER, Kan HJ, Smit X, et al. Extensive percutaneous aponeurotomy and lipografting: a new treatment for Dupuytren disease. Plast Reconstr Surg. 2011;128(1):221–228. doi: 10.1097/PRS.0b013e31821741a

[58]

Hovius S.E.R., Kan H.J., Smit X., et al. Extensive percutaneous aponeurotomy and lipografting: a new treatment for Dupuytren disease // Plast Reconstr Surg. 2011. Vol. 128, N 1. P. 221–228. doi: 10.1097/PRS.0b013e31821741a

[59]

Degreef I. Therapy-Resisting Dupuytren’s Disease: New Perspectives in Adjuvant Treatment (doctoral thesis). Leuven, Belgium: Catholic University Leuven; 2009.

[60]

Degreef I. Therapy-Resisting Dupuytren’s Disease: New Perspectives in Adjuvant Treatment (doctoral thesis). Leuven, Belgium: Catholic University Leuven, 2009.

[61]

Elksniņš-Finogejevs A, Vidal L, Peredistijs A. Intra-articular platelet-rich plasma vs corticosteroids in the treatment of moderate knee osteoarthritis: a single-center prospective randomized controlled study with a 1-year follow up. J Orthop Surg Res. 2020;15(1):257. doi: 10.1186/s13018-020-01753-z

[62]

Elksniņš-Finogejevs A., Vidal L., Peredistijs A. Intra-articular platelet-rich plasma vs corticosteroids in the treatment of moderate knee osteoarthritis: a single-center prospective randomized controlled study with a 1-year follow up // J Orthop Surg Res. 2020. Vol. 15, N 1. P. 257. doi: 10.1186/s13018-020-01753-z

[63]

Ahmad HS, Farrag SE, Okasha AE, et al. Clinical outcomes are associated with changes in ultrasonographic structural appearance after platelet-rich plasma treatment for knee osteoarthritis. Int J Rheum Dis. 2018;21(5):960–966. doi: 10.1111/1756-185X.13315

[64]

Ahmad H.S., Farrag S.E., Okasha A.E., et al. Clinical outcomes are associated with changes in ultrasonographic structural appearance after platelet-rich plasma treatment for knee osteoarthritis // Int J Rheum Dis. 2018. Vol. 21, N 5. P. 960–966. doi: 10.1111/1756-185X.13315

[65]

Matas J, Orrego M, Amenabar D, et al. Umbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC Dosing Is Superior to a Single MSC Dose and to Hyaluronic Acid in a Controlled Randomized Phase I/II Trial. Stem Cells Transl Med. 2019;8(3):215–224. doi: 10.1002/sctm.18-0053

[66]

Matas J., Orrego M., Amenabar D., et al. Umbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC Dosing Is Superior to a Single MSC Dose and to Hyaluronic Acid in a Controlled Randomized Phase I/II Trial // Stem Cells Transl Med. 2019. Vol. 8, N 3. P. 215–224. doi: 10.1002/sctm.18-0053

[67]

Xia T, Yu F, Zhang K, et al. The effectiveness of allogeneic mesenchymal stem cells therapy for knee osteoarthritis in pigs. Ann Transl Med. 2018;6(20):404. doi: 10.21037/atm.2018.09.55

[68]

Xia T., Yu F., Zhang K., et al. The effectiveness of allogeneic mesenchymal stem cells therapy for knee osteoarthritis in pigs // Ann Transl Med. 2018. Vol. 6, N 20. P. 404. doi: 10.21037/atm.2018.09.55

[69]

Dolanmaz D, Saglam M, Inan O, et al. Monitoring Bone Morphogenetic Protein-2 and -7, Soluble Receptor Activator of Nuclear Factor-Κb Ligand and Osteoprotegerin Levels in the Peri-Implant Sulcular Fluid during the Osseointegration of Hydrophilic-Modified Sandblasted Acid-Etched and Sandblaste. J Periodont Res. 2015;50(1):62–73. doi: 10.1111/jre.12182

[70]

Dolanmaz D., Saglam M., Inan O., et al. Monitoring Bone Morphogenetic Protein-2 and -7, Soluble Receptor Activator of Nuclear Factor-Κb Ligand and Osteoprotegerin Levels in the Peri-Implant Sulcular Fluid during the Osseointegration of Hydrophilic-Modified Sandblasted Acid-Etched and Sandblaste // J Periodont Res. 2015. Vol. 50, N 1. P. 62–73. doi: 10.1111/jre.12182

[71]

Loibl M, Lang S, Dendl LM, et al. Leukocyte-reduced platelet-rich plasma treatment of basal thumb arthritis: a pilot study. Biomed Res Int. 2016;2016:9262909. doi: 10.1155/2016/9262909

[72]

Loibl M., Lang S., Dendl L.M., et al. Leukocyte-reduced platelet-rich plasma treatment of basal thumb arthritis: a pilot study // Biomed Res Int. 2016. N 2016. P. 9262909. doi: 10.1155/2016/9262909

[73]

Malahias MA, Roumeliotis L, Nikolaou VS, et al. Platelet-rich plasma versus corticosteroid intraarticular injections for the treatment of trapeziometacarpal arthritis: a prospective randomized controlled clinical trial. Cartilage. 2021;12(1):51–61. doi: 10.1177/1947603518805230

[74]

Malahias M.A., Roumeliotis L., Nikolaou V.S., et al. Platelet-rich plasma versus corticosteroid intraarticular injections for the treatment of trapeziometacarpal arthritis: a prospective randomized controlled clinical trial // Cartilage. 2021. Vol. 12, N 1. P. 51–61. doi: 10.1177/1947603518805230

[75]

Medina-Porqueres I, Martin-Garcia P, Sanz-De Diego S, et al. Platelet-rich plasma for thumb carpometacarpal joint osteoarthritis in a professional pianist: case-based review. Rheumatol Int. 2019;39(12):2167–2175. doi: 10.1007/s00296-019-04454-x

[76]

Medina-Porqueres I., Martin-Garcia P., Sanz-De Diego S., et al. Platelet-rich plasma for thumb carpometacarpal joint osteoarthritis in a professional pianist: case-based review // Rheumatol Int. 2019. Vol. 39, N 12. P. 2167–2175. doi: 10.1007/s00296-019-04454-x

[77]

Haas EM, Eisele A, Arnoldi A, et al. One-year outcomes of intraarticular fat transplantation for thumb carpometacarpal joint osteoarthritis: case review of 99 joints. Plast Reconstr Surg. 2020;145(1):151–159. doi: 10.1097/PRS.0000000000006378

[78]

Haas E.M., Eisele A., Arnoldi A., et al. One-year outcomes of intraarticular fat transplantation for thumb carpometacarpal joint osteoarthritis: case review of 99 joints // Plast Reconstr Surg. 2020. Vol. 145, N 1. P. 151–159. doi: 10.1097/PRS.0000000000006378

[79]

Herold C, Rennekampff HO, Groddeck R, Allert S. Autologous Fat Transfer for Thumb Carpometacarpal Joint Osteoarthritis: A Prospective Study. Plast Reconstr Surg. 2017;140(2):327–335. doi: 10.1097/PRS.0000000000003510

[80]

Herold C., Rennekampff H.O., Groddeck R., Allert S. Autologous Fat Transfer for Thumb Carpometacarpal Joint Osteoarthritis: A Prospective Study // Plast Reconstr Surg. 2017. Vol. 140, N 2. P. 327–335. doi: 10.1097/PRS.0000000000003510

[81]

Froschauer SM, Holzbauer M, Wenny R, et al. Autologous Fat Transplantation for Thumb Carpometacarpal Joint Osteoarthritis (Liparthroplasty): A Case Series with Two Years of Follow-UP. J Clin Med. 2020;10(1):113. doi: 10.3390/jcm10010113

[82]

Froschauer S.M., Holzbauer M., Wenny R., et al. Autologous Fat Transplantation for Thumb Carpometacarpal Joint Osteoarthritis (Liparthroplasty): A Case Series with Two Years of Follow-UP // J Clin Med. 2020. Vol. 10, N 1. P. 113. doi: 10.3390/jcm10010113

[83]

Bohr S, Rennekampff HO, Pallua N. Cell-enriched lipoaspirate arthroplasty: a novel approach to first carpometacarpal joint arthritis. Hand Surg. 2015;20(3):479–481. doi: 10.1142/S0218810415720259

[84]

Bohr S., Rennekampff H.O., Pallua N. Cell-enriched lipoaspirate arthroplasty: a novel approach to first carpometacarpal joint arthritis // Hand Surg. 2015. Vol. 20, N 3. P. 479–481. doi: 10.1142/S0218810415720259

[85]

Mayoly A, Witters M, Jouve E, et al. Intra Articular Injection of Autologous Microfat and Platelets-Rich Plasma in the Treatment of Wrist Osteoarthritis: A Pilot Study. J Clin Med. 2022;11(19):5786. doi: 10.3390/jcm11195786

[86]

Mayoly A., Witters M., Jouve E., et al. Intra Articular Injection of Autologous Microfat and Platelets-Rich Plasma in the Treatment of Wrist Osteoarthritis: A Pilot Study // J Clin Med. 2022. Vol. 11, N 19. P. 5786. doi: 10.3390/jcm11195786

[87]

Cecchi S, Bennet SJ, Arora M. Bone Morphogenetic Protein-7: Review of Signalling and Efficacy in Fracture Healing. J Orthop Translat. 2016;4:28–34. doi: 10.1016/j.jot.2015.08.001

[88]

Cecchi S., Bennet S.J., Arora M. Bone Morphogenetic Protein-7: Review of Signalling and Efficacy in Fracture Healing // J Orthop Translat. 2016. N 4. P. 28–34. doi: 10.1016/j.jot.2015.08.001

[89]

Bilic R, Simic P, Jelic M, et al. Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis. Int Orthop. 2006;30(2):128–134. doi: 10.1007/s00264-005-0045-z

[90]

Bilic R., Simic P., Jelic M., et al. Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis // Int Orthop. 2006. Vol. 30, N 2. P. 128–134. doi: 10.1007/s00264-005-0045-z

[91]

Jones NF, Brown EE, Mostofi A, et al. Healing of a scaphoid nonunion using human bone morphogenetic protein. J Hand Surg Am. 2005;30(3):528–533. doi: 10.1016/j.jhsa.2004.12.005

[92]

Jones N.F., Brown E.E., Mostofi A., et al. Healing of a scaphoid nonunion using human bone morphogenetic protein // J Hand Surg Am. 2005. Vol. 30, N 3. P. 528–533. doi: 10.1016/j.jhsa.2004.12.005

[93]

Ablove RH, Abrams SS. The use of BMP-2 and screw exchange in the treatment of scaphoid fracture non-union. Hand Surg. 2015;20(1):167–171. doi: 10.1142/S0218810415970023

[94]

Ablove R.H., Abrams S.S. The use of BMP-2 and screw exchange in the treatment of scaphoid fracture non-union // Hand Surg. 2015. Vol. 20, N 1. P. 167–171. doi: 10.1142/S0218810415970023

[95]

Jones NF, Brown EE, Vogelin E, Urist MR. Bone morphogenetic protein as an adjuvant in the treatment of Kienbock’s disease by vascular pedicle implantation. J Hand Surg Eur. 2008;33(3):317–321. doi: 10.1177/1753193408090394

[96]

Jones N.F., Brown E.E., Vogelin E., Urist M.R. Bone morphogenetic protein as an adjuvant in the treatment of Kienbock’s disease by vascular pedicle implantation // J Hand Surg Eur. 2008. Vol. 33, N 3, P. 317–321. doi: 10.1177/1753193408090394

[97]

Rajfer RA, Danoff JR, Metzl JA, Rosenwasser MP. A novel arthroscopic technique utilizing bone morphogenetic protein in the treatment of Kienbock disease. Tech Hand Up Extrem Surg. 2013;17(1):2–6. doi: 10.1097/BTH.0b013e3182712ba0

[98]

Rajfer R.A., Danoff J.R., Metzl J.A., Rosenwasser M.P. A novel arthroscopic technique utilizing bone morphogenetic protein in the treatment of Kienbock disease // Tech Hand Up Extrem Surg. 2013. Vol. 17, N 1. P. 2–6. doi: 10.1097/BTH.0b013e3182712ba0

[99]

Chen X, Jones IA, Park C, Vangsness CT. The efficacy of platelet-rich plasma on tendon and ligament healing: a systematic review and meta-analysis with bias assessment. Am J Sports Med. 2018;46(8):2020–2032. doi: 10.1177/0363546517743746

[100]

Chen X., Jones I.A., Park C., Vangsness C.T. The efficacy of platelet-rich plasma on tendon and ligament healing: a systematic review and meta-analysis with bias assessment // Am J Sports Med. 2018. Vol. 46, N 8. P. 2020–2032. doi: 10.1177/0363546517743746

[101]

Haunschild ED, Huddleston HP, Chahla J, et al. Platelet-rich plasma augmentation in meniscal repair surgery: a systematic review of comparative studies. Arthroscopy. 2020;36(6):1765–1774. doi: 10.1016/j.arthro.2020.01.038

[102]

Haunschild E.D., Huddleston H.P., Chahla J., et al. Platelet-rich plasma augmentation in meniscal repair surgery: a systematic review of comparative studies // Arthroscopy. 2020. Vol. 36, N 6. P. 1765–1774. doi: 10.1016/j.arthro.2020.01.038

[103]

Belk JW, Kraeutler MJ, Thon SG, et al. Augmentation of meniscal repair with platelet-rich plasma: a systematic review of comparative studies. Orthop J Sports Med. 2020;8(6):2325967120926145. doi: 10.1177/2325967120926145

[104]

Belk J.W., Kraeutler M.J., Thon S.G., et al. Augmentation of meniscal repair with platelet-rich plasma: a systematic review of comparative studies // Orthop J Sports Med. 2020. Vol. 8, N 6. P. 2325967120926145. doi: 10.1177/2325967120926145

[105]

Sochacki KR, Safran MR, Abrams GD, et al. Platelet-rich plasma augmentation for isolated arthroscopic meniscal repairs leads to significantly lower failure rates: a systematic review of comparative studies. Orthop J Sports Med. 2020;8(11):2325967120964534. doi: 10.1177/2325967120964534

[106]

Sochacki K.R., Safran M.R., Abrams G.D., et al. Platelet-rich plasma augmentation for isolated arthroscopic meniscal repairs leads to significantly lower failure rates: a systematic review of comparative studies // Orthop J Sports Med. 2020. Vol. 8, N 11. P. 2325967120964534. doi: 10.1177/2325967120964534

[107]

Stachura A, Paskal W, Pawlik W, et al. The Use of Adipose-Derived Stem Cells (ADSCs) and Stromal Vascular Fraction (SVF) in Skin Scar Treatment-A Systematic Review of Clinical Studies. J Clin Med. 2021;10(16):3637. doi: 10.3390/jcm10163637

[108]

Stachura A., Paskal W., Pawlik W., et al. The Use of Adipose-Derived Stem Cells (ADSCs) and Stromal Vascular Fraction (SVF) in Skin Scar Treatment-A Systematic Review of Clinical Studies // J Clin Med. 2021. Vol. 10, N 16. P. 3637. doi: 10.3390/jcm10163637

[109]

Carstens MH, Correa D, Llull R, et al. Subcutaneous reconstruction of hand dorsum and fingers for late sequelae of burn scars using adipose-derived stromal vascular fraction (SVF). CellR4. 2015;3(5):e1675.

[110]

Carstens M.H., Correa D., Llull R., et al. Subcutaneous reconstruction of hand dorsum and fingers for late sequelae of burn scars using adipose-derived stromal vascular fraction (SVF) // CellR4. 2015. Vol. 3, N 5. P. e1675.

[111]

Carstens MH, Pérez M, Briceño H, et al. Treatment of late sequelae of burn scar fibrosis with adi-pose-derived stromal vascular fraction (SVF) cells: A case series. CellR4. 2017;5(3):e2404.

[112]

Carstens M.H., Pérez M., Briceño H., et al. Treatment of late sequelae of burn scar fibrosis with adi-pose-derived stromal vascular fraction (SVF) cells: A case series // CellR4. 2017. Vol. 5, N 3. P. e2404.

[113]

Azzena B, Mazzoleni F, Abatangelo G, et al. Autologous platelet-rich plasma as an adipocyte in vivo delivery system: case report. Aesthet Plast Surg. 2008;32(1):155–158;discussion 159–161. doi: 10.1007/s00266-007-9022-9

[114]

Azzena B., Mazzoleni F., Abatangelo G., et al. Autologous platelet-rich plasma as an adipocyte in vivo delivery system: case report // Aesthet Plast Surg. 2008. Vol. 32, N 1. P. 155–158. Discussion 159–161. doi: 10.1007/s00266-007-9022-9

[115]

To K, Crowley C, Lim S-K, Khan WS. Autologous adipose tissue grafting for the management of the painful scar. Cytotherapy. 2019;21(11):1151–1160. doi: 10.1016/j.jcyt.2019.08.005

[116]

To K., Crowley C., Lim S.-K., Khan W.S. Autologous adipose tissue grafting for the management of the painful scar // Cytotherapy. 2019. Vol. 21, N 11. P. 1151–1160. doi: 10.1016/j.jcyt.2019.08.005

[117]

Krastev TK, Schop SJ, Hommes J, et al. Autologous fat transfer to treat fibrosis and scar-related conditions: A systematic review and meta-analysis. J Plast Reconstr Aesthetic Surg. 2020;73(11):2033–2048. doi: 10.1016/j.bjps.2020.08.023

[118]

Krastev T.K., Schop S.J., Hommes J., et al. Autologous fat transfer to treat fibrosis and scar-related conditions: A systematic review and meta-analysis // J Plast Reconstr Aesthetic Surg. 2020. Vol. 73, N 11. P. 2033–2048. doi: 10.1016/j.bjps.2020.08.023

[119]

Lee JW, Park SH, Lee SJ, et al. Clinical Impact of Highly Condensed Stromal Vascular Fraction Injection in Surgical Management of Depressed and Contracted Scars. Aesthetic Plast Surg. 2018;42(6):1689–1698. doi: 10.1007/s00266-018-1216-9

[120]

Lee J.W., Park S.H., Lee S.J., et al. Clinical Impact of Highly Condensed Stromal Vascular Fraction Injection in Surgical Management of Depressed and Contracted Scars // Aesthetic Plast Surg. 2018. Vol. 42, N 6. P. 1689–1698. doi: 10.1007/s00266-018-1216-9

[121]

Jan SN, Bashir MM, Khan FA, et al. Unfiltered Nanofat Injections Rejuvenate Postburn Scars of Face. Ann Plast Surg. 2019;82(1):28–33. doi: 10.1097/SAP.0000000000001631

[122]

Jan S.N., Bashir M.M., Khan F.A., et al. Unfiltered Nanofat Injections Rejuvenate Postburn Scars of Face // Ann Plast Surg. 2019. Vol. 82, N 1. P. 28–33. doi: 10.1097/SAP.0000000000001631

[123]

Gümbel D, Ackerl M, Napp M, et al. Retrospective analysis of 56 soft tissue defects treated with one-stage reconstruction using dermal skin substitutes. J Dtsch Dermatol Ges. 2016;14(6):595–601. doi: 10.1111/ddg.12874

[124]

Gümbel D., Ackerl M., Napp M., et al. Retrospective analysis of 56 soft tissue defects treated with one-stage reconstruction using dermal skin substitutes // J Dtsch Dermatol Ges. 2016. Vol. 14, N 6. P. 595–601. doi: 10.1111/ddg.12874

[125]

Liu Q, Zhang N, Li Z, He H. Efficacy of autologous platelet-rich plasma gel in the treatment of refractory pressure injuries and its effect on wound healing time and patient quality of life. Clinics (Sao Paolo). 2021;76:e2355. doi: 10.6061/clinics/2021/e2355

[126]

Liu Q., Zhang N., Li Z., He H. Efficacy of autologous platelet-rich plasma gel in the treatment of refractory pressure injuries and its effect on wound healing time and patient quality of life // Clinics (Sao Paolo). 2021. N 76. P. e2355. doi: 10.6061/clinics/2021/e2355

[127]

O’Connell B, Wragg NM, Wilson SL. The use of PRP injections in the management of knee osteoarthritis. Cell Tissue Res. 2019;376(2):143–152. doi: 10.1007/s00441-019-02996-x

[128]

O’Connell B., Wragg N.M., Wilson S.L. The use of PRP injections in the management of knee osteoarthritis // Cell Tissue Res. 2019. Vol. 376, N 2. P. 143–152. doi: 10.1007/s00441-019-02996-x

[129]

Deng Z, Long ZS, Gong FP, Chen G. The efficacy and safety of platelet-rich plasma in the tendon-exposed wounds: a preliminary study. J Orthop Surg Res. 2022;17(1):497. doi: 10.1186/s13018-022-03401-0

[130]

Deng Z., Long Z.S., Gong F.P., Chen G. The efficacy and safety of platelet-rich plasma in the tendon-exposed wounds: a preliminary study // J Orthop Surg Res. 2022. Vol. 17, N 1. P. 497. doi: 10.1186/s13018-022-03401-0

[131]

Spartalis E, Tomos P, Konofaos P, et al. The effect of autologous platelet-rich plasma on bronchial stump tissue granulation after pneumonectomy: experimental study. ISRN Surg. 2013;2013:864350. doi: 10.1155/2013/864350

[132]

Spartalis E., Tomos P., Konofaos P., et al. The effect of autologous platelet-rich plasma on bronchial stump tissue granulation after pneumonectomy: experimental study // ISRN Surg. 2013. N 2013. P. 864350. doi: 10.1155/2013/864350

[133]

Menchisheva Y, Mirzakulova U, Yui R. Use of platelet-rich plasma to facilitate wound healing. Int Wound J. 2019;16(2):343–353. doi: 10.1111/iwj.13034

[134]

Menchisheva Y., Mirzakulova U., Yui R. Use of platelet-rich plasma to facilitate wound healing // Int Wound J. 2019. Vol. 16, N 2. P. 343–353. doi: 10.1111/iwj.13034

[135]

Guo SC, Tao SC, Yin WJ, et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017;7(1):81–96. doi: 10.7150/thno.16803

[136]

Guo S.C., Tao S.C., Yin W.J., et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model // Theranostics. 2017. Vol. 7, N 1. P. 81–96. doi: 10.7150/thno.16803

[137]

Dong C, Sun Y, Qi Y, et al. Effect of Platelet-Rich Plasma Injection on Mild or Moderate Carpal Tunnel Syndrome: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Biomed Res Int. 2020;2020:5089378. doi: 10.1155/2020/5089378

[138]

Dong C., Sun Y., Qi Y., et al. Effect of Platelet-Rich Plasma Injection on Mild or Moderate Carpal Tunnel Syndrome: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials // Biomed Res Int. 2020. N 2020. P. 5089378. doi: 10.1155/2020/5089378

[139]

Kim HJ, Park SH. Median nerve injuries caused by carpal tunnel injections. Korean J Pain. 2014;27(2):112–117. doi: 10.3344/kjp.2014.27.2.112

[140]

Kim H.J., Park S.H. Median nerve injuries caused by carpal tunnel injections // Korean J Pain. 2014. Vol. 27, N 2. P. 112–117. doi: 10.3344/kjp.2014.27.2.112

[141]

Ding XG, Li SW, Zheng XM, et al. The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model. Asian J Androl. 2009;11(2):215–221. doi: 10.1038/aja.2008.37

[142]

Ding X.G., Li S.W., Zheng X.M., et al. The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model // Asian J Androl. 2009. Vol. 11, N 2. P. 215–221. doi: 10.1038/aja.2008.37

[143]

Cass SP. Ultrasound-Guided Nerve Hydrodissection: What Is it? A Review of the Literature. Curr Sports Med Rep. 2016;15(1):20–22. doi: 10.1249/JSR.0000000000000226

[144]

Cass S.P. Ultrasound-Guided Nerve Hydrodissection: What Is it? A Review of the Literature // Curr Sports Med Rep. 2016. Vol. 15, N 1. P. 20–22. doi: 10.1249/JSR.0000000000000226

[145]

Senna MK, Shaat RM, Ali AAA. Platelet-rich plasma in treatment of patients with idiopathic carpal tunnel syndrome. Clin Rheumatol. 2019;38(12):3643–3654. doi: 10.1007/s10067-019-04719-7

[146]

Senna M.K., Shaat R.M., Ali A.A.A. Platelet-rich plasma in treatment of patients with idiopathic carpal tunnel syndrome // Clin Rheumatol. 2019. Vol. 38, N 12. P. 3643–3654. doi: 10.1007/s10067-019-04719-7

[147]

Malahias MA, Nikolaou VS, Johnson EO, et al. Platelet-rich plasma ultrasound-guided injection in the treatment of carpal tunnel syndrome: a placebo-controlled clinical study. J Tissue Eng Regen Med. 2018;12(3):e1480–e1488. doi: 10.1002/term.2566

[148]

Malahias M.A., Nikolaou V.S., Johnson E.O., et al. Platelet-rich plasma ultrasound-guided injection in the treatment of carpal tunnel syndrome: a placebo-controlled clinical study // J Tissue Eng Regen Med. 2018. Vol. 12, N 3. P. e1480–e1488. doi: 10.1002/term.2566

[149]

Wu YT, Ho TY, Chou YC, et al. Six-month efficacy of platelet-rich plasma for carpal tunnel syndrome: a prospective randomized, single-blind controlled trial. Sci Rep. 2017;7(1):94. doi: 10.1038/s41598-017-00224-6

[150]

Wu Y.T., Ho T.Y., Chou Y.C., et al. Six-month efficacy of platelet-rich plasma for carpal tunnel syndrome: a prospective randomized, single-blind controlled trial // Sci Rep. 2017. Vol. 7, N 1. P. 94. doi: 10.1038/s41598-017-00224-6

[151]

Shen YP, Li TY, Chou YC, et al. Comparison of perineural platelet rich plasma and dextrose injections for moderate carpal tunnel syndrome: a prospective randomized, single-blind, head-to-head comparative trial. J Tissue Eng Regen Med. 2019;13(11):2009–2017. doi: 10.1002/term.2950

[152]

Shen Y.P., Li T.Y., Chou Y.C., et al. Comparison of perineural platelet rich plasma and dextrose injections for moderate carpal tunnel syndrome: a prospective randomized, single-blind, head-to-head comparative trial // J Tissue Eng Regen Med. 2019. Vol. 13, N 11. P. 2009–2017. doi: 10.1002/term.2950

[153]

Chen SR, Shen YP, Ho TY, et al. One-Year Efficacy of Platelet-Rich Plasma for Moderate-to-Severe Carpal Tunnel Syndrome: A Prospective, Randomized, Double-Blind, Controlled Trial. Arch Phys Med Rehabil. 2021;102(5):951–958. doi: 10.1016/j.apmr.2020.12.025

[154]

Chen S.R., Shen Y.P., Ho T.Y., et al. One-Year Efficacy of Platelet-Rich Plasma for Moderate-to-Severe Carpal Tunnel Syndrome: A Prospective, Randomized, Double-Blind, Controlled Trial // Arch Phys Med Rehabil. 2021. Vol. 102, N 5. P. 951–958. doi: 10.1016/j.apmr.2020.12.025

[155]

Trull-Ahuir C, Sala D, Chismol-Abad J, et al. Efficacy of platelet-rich plasma as an adjuvant to surgical carpal ligament release: a prospective, randomized controlled clinical trial. Sci Rep. 2020;10(1):2085. doi: 10.1038/s41598-020-59113-0

[156]

Trull-Ahuir C., Sala D., Chismol-Abad J., et al. Efficacy of platelet-rich plasma as an adjuvant to surgical carpal ligament release: a prospective, randomized controlled clinical trial // Sci Rep. 2020. Vol. 10, N 1. P. 2085. doi: 10.1038/s41598-020-59113-0

[157]

Kuo YC, Lee CC, Hsieh LF. Ultrasound-guided perineural injection with platelet-rich plasma improved the neurophysiological parameters of carpal tunnel syndrome: a case report. J Clin Neurosci. 2017;44:234–236. doi: 10.1016/j.jocn.2017.06.053

[158]

Kuo Y.C., Lee C.C., Hsieh L.F. Ultrasound-guided perineural injection with platelet-rich plasma improved the neurophysiological parameters of carpal tunnel syndrome: a case report // J Clin Neurosci. 2017. N 44. P. 234–236. doi: 10.1016/j.jocn.2017.06.053

[159]

Chen LC, Ho CW, Sun CH, et al. Ultrasound-guided pulsed radiofrequency for carpal tunnel syndrome: a single-blinded randomized controlled study. PLoS One. 2015;10(6):e0129918. doi: 10.1371/journal.pone.0129918

[160]

Chen L.C., Ho C.W., Sun C.H., et al. Ultrasound-guided pulsed radiofrequency for carpal tunnel syndrome: a single-blinded randomized controlled study // PLoS One. 2015. Vol. 10, N 6. Article e0129918. doi: 10.1371/journal.pone.0129918

[161]

Ustün N, Tok F, Yagz AE, et al. Ultrasound-guided vs. Blind Steroid Injections in Carpal Tunnel Syndrome: A Single-Blind Randomized Prospective Study. Am J Phys Med Rehabil. 2013;92(11):999–1004. doi: 10.1097/PHM.0b013e31829b4d72

[162]

Ustün N., Tok F., Yagz A.E., et al. Ultrasound-guided vs. Blind Steroid Injections in Carpal Tunnel Syndrome: A Single-Blind Randomized Prospective Study // Am J Phys Med Rehabil. 2013. Vol. 92, N 11. P. 999–1004. doi: 10.1097/PHM.0b013e31829b4d72

[163]

Stokvis A, van der Avoort DJ, van Neck JW, et al. Surgical management of neuroma pain: a prospective follow-up study. Pain. 2010;151(3):862–869. doi: 10.1016/j.pain.2010.09.032

[164]

Stokvis A., van der Avoort D.J., van Neck J.W., et al. Surgical management of neuroma pain: a prospective follow-up study // Pain. 2010. Vol. 151, N 3. P. 862–869. doi: 10.1016/j.pain.2010.09.032

[165]

Lutz BS, Ma SF, Chuang DC, et al. Interposition of a pedicle fat flap significantly improves specificity of reinnervation and motor recovery after repair of transected nerves in adjacency in rats. Plast Reconstr Surg. 2001;107(1):116–123. doi: 10.1097/00006534-200101000-00017

[166]

Lutz B.S., Ma S.F., Chuang D.C., et al. Interposition of a pedicle fat flap significantly improves specificity of reinnervation and motor recovery after repair of transected nerves in adjacency in rats // Plast Reconstr Surg. 2001. Vol. 107, N 1. P. 116–123. doi: 10.1097/00006534-200101000-00017

[167]

Guo J, Nguyen A, Banyard DA, Fadavi D, et al. Stromal vascular fraction: a regenerative reality? Part 2: mechanisms of regenerative action. J Plast Reconstr Aesthet Surg. 2015;69(2):180–188. doi: 10.1016/j.bjps.2015.10.014

[168]

Guo J., Nguyen A., Banyard D.A., Fadavi D., et al. Stromal vascular fraction: a regenerative reality? Part 2: mechanisms of regenerative action // J Plast Reconstr Aesthet Surg. 2015. Vol. 69, N 2. P. 180–188. doi: 10.1016/j.bjps.2015.10.014

[169]

Zimmermann S, Fakin RM, Giovanoli P, Calcagni M. Outcome of Stromal Vascular Fraction-Enriched Fat Grafting Compared to Intramuscular Transposition in Painful End-Neuromas of Superficial Radial Nerve: Preliminary Results. Front Surg. 2018;5:10. doi: 10.3389/fsurg.2018.00010

[170]

Zimmermann S., Fakin R.M., Giovanoli P., Calcagni M. Outcome of Stromal Vascular Fraction-Enriched Fat Grafting Compared to Intramuscular Transposition in Painful End-Neuromas of Superficial Radial Nerve: Preliminary Results // Front Surg. 2018. N 5. P. 10. doi: 10.3389/fsurg.2018.00010

[171]

Calcagni M, Zimmermann S, Scaglioni MF, et al. The novel treatment of SVF-enriched fat grafting for painful end-neuromas of superficial radial nerve. Microsurgery. 2018;38(3):264–269. doi: 10.1002/micr.30122

[172]

Calcagni M., Zimmermann S., Scaglioni M.F., et al. The novel treatment of SVF-enriched fat grafting for painful end-neuromas of superficial radial nerve // Microsurgery. 2018. Vol. 38, N 3. P. 264–269. doi: 10.1002/micr.30122

[173]

Yu T, Xu Y, Ahmad MA, Javed R, et al. Exosomes as a Promising Therapeutic Strategy for Peripheral Nerve Injury. Curr Neuropharmacol. 2021;19(12):2141–2151. doi: 10.2174/1570159X19666210203161559

[174]

Yu T., Xu Y., Ahmad M.A., Javed R., et al. Exosomes as a Promising Therapeutic Strategy for Peripheral Nerve Injury // Curr Neuropharmacol. 2021. Vol. 19, N 12. P. 2141–2151. doi: 10.2174/1570159X19666210203161559

[175]

Tang BL. Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Res Bull. 2018;143:123–131. doi: 10.1016/j.brainresbull.2018.10.008

[176]

Tang B.L. Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers // Brain Res Bull. 2018. N 143. P. 123–131. doi: 10.1016/j.brainresbull.2018.10.008

[177]

Wieringa PA, Gonçalves de Pinho AR, Micera S, et al. Biomimetic architectures for peripheral nerve repair: a review of biofabrication strategies. Adv Healthc Mater. 2018;7(8):e1701164. doi: 10.1002/adhm.201701164

[178]

Wieringa P.A., Gonçalves de Pinho A.R., Micera S., et al. Biomimetic architectures for peripheral nerve repair: a review of biofabrication strategies // Adv Healthc Mater. 2018. Vol. 7, N 8. P. e1701164. doi: 10.1002/adhm.201701164

[179]

Panayi AC, Orgill DP. Current use of biological scaffolds in plastic surgery. Plast Reconstr Surg. 2019;143(1):209–220. doi: 10.1097/PRS.0000000000005102

[180]

Panayi A.C., Orgill D.P. Current use of biological scaffolds in plastic surgery // Plast Reconstr Surg. 2019. Vol. 143, N 1. P. 209–220. doi: 10.1097/PRS.0000000000005102

[181]

Li D, Huang S, Yin Z, et al. Increases in miR-124-3p in microglial exosomes confer neuroprotective effects by targeting FIP200-mediated neuronal autophagy following traumatic brain injury. Neurochem Res. 2019;44(8):1903–1923. doi: 10.1007/s11064-019-02825-1

[182]

Li D., Huang S., Yin Z., et al. Increases in miR-124-3p in microglial exosomes confer neuroprotective effects by targeting FIP200-mediated neuronal autophagy following traumatic brain injury // Neurochem Res. 2019. Vol. 44, N 8. P. 1903–1923. doi: 10.1007/s11064-019-02825-1

[183]

Ma Z, Wang Y, Li H. Applications of extracellular vesicles in tissue regeneration. Biomicrofluidics. 2020;14(1):011501. doi: 10.1063/1.5127077

[184]

Ma Z., Wang Y., Li H. Applications of extracellular vesicles in tissue regeneration // Biomicrofluidics. 2020. Vol. 14, N 1. P. 011501. doi: 10.1063/1.5127077

[185]

Rao F, Zhang D, Fang T, et al. Exosomes from human gingiva-derived mesenchymal stem cells combined with biodegradable chitin conduits promote rat sciatic nerve Regeneration. Stem Cells Int. 2019;2019:2546367. doi: 10.1155/2019/2546367

[186]

Rao F., Zhang D., Fang T., et al. Exosomes from human gingiva-derived mesenchymal stem cells combined with biodegradable chitin conduits promote rat sciatic nerve Regeneration // Stem Cells Int. 2019. N 2019. P. 2546367. doi: 10.1155/2019/2546367

[187]

Chen J, Ren S, Duscher D, et al. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function. J Cell Physiol. 2019;234(12):23097–23110. doi: 10.1002/jcp.28873

[188]

Chen J., Ren S., Duscher D., et al. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function // J Cell Physiol. 2019. Vol. 234, N 12. P. 23097–23110. doi: 10.1002/jcp.28873

[189]

Liu CY, Yin G, Sun YD, et al. Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury. CNS Neurosci Ther. 2020;26(2):189–196. doi: 10.1111/cns.13187

[190]

Liu C.Y., Yin G., Sun Y.D., et al. Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury // CNS Neurosci Ther. 2020. Vol. 26, N 2. P. 189–196. doi: 10.1111/cns.13187

[191]

Bucan V, Vaslaitis D, Peck CT, et al. Effect of Exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury. Mol Neurobiol. 2019;56(3):1812–1824. doi: 10.1007/s12035-018-1172-z

[192]

Bucan V., Vaslaitis D., Peck C.T., et al. Effect of Exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury // Mol Neurobiol. 2019. Vol. 56, N 3. P. 1812–1824. doi: 10.1007/s12035-018-1172-z

[193]

Mohammadi R, Sanaei N, Ahsan S, et al. Repair of nerve defect with chitosan graft supplemented by uncultured characterized stromal vascular fraction in streptozotocin induced diabetic rats. Int J Surg. 2014;12(5):33–40. doi: 10.1016/j.ijsu.2013.10.018

[194]

Mohammadi R., Sanaei N., Ahsan S., et al. Repair of nerve defect with chitosan graft supplemented by uncultured characterized stromal vascular fraction in streptozotocin induced diabetic rats // Int J Surg. 2014. Vol. 12, N 5. P. 33–40. doi: 10.1016/j.ijsu.2013.10.018

[195]

Erba P, Mantovani C, Kalbermatten DF, et al. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aesthet Surg. 2010;63(12):e811–e817. doi: 10.1016/j.bjps.2010.08.013

[196]

Erba P., Mantovani C., Kalbermatten D.F., et al. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits // J Plast Reconstr Aesthet Surg. 2010. Vol. 63, N 12. P. e811–e817. doi: 10.1016/j.bjps.2010.08.013

[197]

Liu G, Cheng Y, Guo S, et al. Transplantation of adipose-derived stem cells for peripheral nerve repair. Int J Mol Med. 2011;28(4):565–572. doi: 10.3892/ijmm.2011.725

[198]

Liu G., Cheng Y., Guo S., et al. Transplantation of adipose-derived stem cells for peripheral nerve repair // Int J Mol Med. 2011. Vol. 28, N 4. P. 565–572. doi: 10.3892/ijmm.2011.725

[199]

Pappalardo M, Montesano L, Toia F, et al. Immunomodulation in vascularized composite allotransplantation: what is the role for adipose-derived stem cells? Ann Plast Surg. 2019;82(2):245–251. doi: 10.1097/SAP.0000000000001763

[200]

Pappalardo M., Montesano L., Toia F., et al. Immunomodulation in vascularized composite allotransplantation: what is the role for adipose-derived stem cells? // Ann Plast Surg. 2019. Vol. 82, N 2. P. 245–251. doi: 10.1097/SAP.0000000000001763

[201]

Starnoni M, Pappalardo M, Spinella A, et al. Systemic sclerosis cutaneous expression: Management of skin fibrosis and digital ulcers. Ann Med Surg (Lond). 2021;71:102984. doi: 10.1016/j.amsu.2021.102984

[202]

Starnoni M., Pappalardo M., Spinella A., et al. Systemic sclerosis cutaneous expression: Management of skin fibrosis and digital ulcers // Ann Med Surg (Lond). 2021. N 71. P. 102984. doi: 10.1016/j.amsu.2021.102984

[203]

Pignatti M, Spinella A, Cocchiara E, et al. Autologous Fat Grafting for the Oral and Digital Complications of Systemic Sclerosis: Results of a Prospective Study. Aesthetic Plast Surg. 2020;44(5):1820–1832. doi: 10.1007/s00266-020-01848-2

[204]

Pignatti M., Spinella A., Cocchiara E., et al. Autologous Fat Grafting for the Oral and Digital Complications of Systemic Sclerosis: Results of a Prospective Study // Aesthetic Plast Surg. 2020. Vol. 44, N 5. P. 1820–1832. doi: 10.1007/s00266-020-01848-2

[205]

Scuderi N, Ceccarelli S, Onesti MG, et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis. Cell Transpl. 2013;22(5):779–795. doi: 10.3727/096368912X639017

[206]

Scuderi N., Ceccarelli S., Onesti M.G., et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis // Cell Transpl. 2013. Vol. 22, N 5. P. 779–795. doi: 10.3727/096368912X639017

[207]

Bene MD, Pozzi MR, Rovati L, et al. Autologous fat grafting for scleroderma-induced digital ulcers. An effective technique in patients with systemic sclerosis. Handchir Mikrochir Plast Chir. 2014;46(4):242–247. doi: 10.1055/s-0034-1376970

[208]

Bene M.D., Pozzi M.R., Rovati L., et al. Autologous fat grafting for scleroderma-induced digital ulcers. An effective technique in patients with systemic sclerosis // Handchir Mikrochir Plast Chir. 2014. Vol. 46, N 4. P. 242–247. doi: 10.1055/s-0034-1376970

[209]

Granel B, Daumas A, Jouve E, et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial. Ann Rheum Dis. 2015;74(12):2175–2182. doi: 10.1136/annrheumdis-2014-205681

[210]

Granel B., Daumas A., Jouve E., et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial // Ann Rheum Dis. 2015. Vol. 74, N 12. P. 2175–2182. doi: 10.1136/annrheumdis-2014-205681

[211]

Bank J, Fuller SM, Henry GI, Zachary LS. Fat grafting to the hand in patients with Raynaud phenomenon: a novel therapeutic modality. Plast Reconstr Surg. 2014;133(5):1109–1118. doi: 10.1097/PRS.0000000000000104

[212]

Bank J., Fuller S.M., Henry G.I., Zachary L.S. Fat grafting to the hand in patients with Raynaud phenomenon: a novel therapeutic modality // Plast Reconstr Surg. 2014. Vol. 133, N 5. P. 1109–1118. doi: 10.1097/PRS.0000000000000104

[213]

Jiang J, Xing F, Luo R, Liu M. Effectiveness of Platelet-Rich Plasma for Patients With Carpal Tunnel Syndrome: A Systematic Review and meta-Analysis of Current Evidence in Randomized Controlled Trials. Front Pharmacol. 2022;13:834213. doi: 10.3389/fphar.2022.834213.

[214]

Jiang J., Xing F., Luo R., Liu M. Effectiveness of Platelet-Rich Plasma for Patients With Carpal Tunnel Syndrome: A Systematic Review and Meta-Analysis of Current Evidence in Randomized Controlled Trials // Front Pharmacol. 2022. N 13. P. 834213. doi: 10.3389/fphar.2022.834213.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/