Medical simulator for the training of radiologists: experimental work

Ilya V. Markin , Konstantin S. Alexandrov , Natalia V. Varlamova , Petr K. Potapov , Evgeniy A. Zhurbin , Anton N. Matysin , Aleksandr V. Shirshin , Elena S. Shchelkanova

N.N. Priorov Journal of Traumatology and Orthopedics ›› 2023, Vol. 30 ›› Issue (3) : 335 -346.

PDF
N.N. Priorov Journal of Traumatology and Orthopedics ›› 2023, Vol. 30 ›› Issue (3) : 335 -346. DOI: 10.17816/vto321307
Original study articles
research-article

Medical simulator for the training of radiologists: experimental work

Author information +
History +
PDF

Abstract

BACKGROUND: Ankle injuries of various nature — bruises, sprains, tears, dislocations and subluxations, and fractures — account for 20–30% of all musculoskeletal system injuries. The most common ankle injuries are a tear and sprain. The difficulty in treating fractures in this location is due to the need for accurate repositioning of the articular surface and stable fixation of fragments. The actual task is to train roentgenologists in the field. The inclusion of medical personnel in the educational process at all levels of training simulation courses aids in the reduction of errors, reduction of problems, and the improvement of the quality of medical treatment provided to the public.

OBJECTIVE: This study aims to develop and create a simulator that simulates human bone structure and soft tissues and allows roentgenologists to get through training and instruction radiological examinations of an ankle joint and a foot.

MATERIALS AND METHODS: The following stages of the simulator’s development have been completed: acquiring ankle bone samples, creating a mold for casting, and constructing the simulator. The results of computer and magnetic resonance imaging were used to construct bone samples, from which a computerized 3D model of the bones of the foot and ankle joint was obtained. Using additive technologies, anatomically correct reproductions of human foot and ankle bones were made. At the next stage, a three-dimensional digital model was developed, and a mold for casting the finished product was made. Bone samples collected in a single structure were placed inside the mold. Next, a step-by-step filling of the form with a soft gel-like material was performed. In this case, a self-vulcanizing silicone rubber composition is selected, which, after solidification, imitates human soft tissues.

RESULTS: During the course of the study, a prototype medical simulator was created that models human bone structure and soft tissues and allows roentgenologists to practice performing ankle joint and foot roentgenography.

CONCLUSION: Because of its high anatomical accuracy, ease of use, and mass production potential, the developed simulator can be widely employed in the teaching of roentgenologists.

Keywords

medical simulator / additive technologies / ankle joint / foot / roentgenology / simulator

Cite this article

Download citation ▾
Ilya V. Markin, Konstantin S. Alexandrov, Natalia V. Varlamova, Petr K. Potapov, Evgeniy A. Zhurbin, Anton N. Matysin, Aleksandr V. Shirshin, Elena S. Shchelkanova. Medical simulator for the training of radiologists: experimental work. N.N. Priorov Journal of Traumatology and Orthopedics, 2023, 30(3): 335-346 DOI:10.17816/vto321307

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kondratenko IV. Biomekhanicheskoe issledovanie sostoyaniya struktur stupni pri perelome naruzhnoj lodyzhki. Nauka nastoyashchego i budushchego. 2018;(1):418–421. (In Russ).

[2]

Кондратенко И.В. Биомеханическое исследование состояния структур ступни при переломе наружной лодыжки // Наука настоящего и будущего. 2018. № 1. С. 418–421.

[3]

Li Y, Guo R, Wang Y, Ma J, Miao X, Yang J, Zhang Z, Wu X, Ren T, Jiang D. Shoe-Integrated Sensor System for Diagnosis of the Concomitant Syndesmotic Injury in Chronic Lateral Ankle Instability: A Prospective Double-Blind Diagnostic Test. Nanomaterials (Basel). 2023;13(9):1539. doi: 10.3390/nano13091539

[4]

Li Y., Guo R., Wang Y., Ma J., Miao X., Yang J., Zhang Z., Wu X., Ren T., Jiang D. Shoe-Integrated Sensor System for Diagnosis of the Concomitant Syndesmotic Injury in Chronic Lateral Ankle Instability: A Prospective Double-Blind Diagnostic Test // Nanomaterials (Basel). 2023. Vol. 13, № 9. Р. 1539. doi: 10.3390/nano13091539

[5]

Koh D, Chandrakumara D, Kon Kam King C. Incidence of Injuries Associated with Anterior Talofibular Ligament Injury Based on the Reporting of Magnetic Resonance Imaging. Cureus. 2023;15(7):e41738. doi: 10.7759/cureus.41738

[6]

Koh D., Chandrakumara D., Kon Kam King C. Incidence of Injuries Associated with Anterior Talofibular Ligament Injury Based on the Reporting of Magnetic Resonance Imaging // Cureus. 2023. Vol. 15, № 7. Р. e41738. doi: 10.7759/cureus.41738

[7]

Zeng J, Xu C, Xu G, Wang D, et al. The Global Status of Research in Ankle Fracture: A Bibliometric and Visualized Study. Front Surg. 2022;14(9):853101. doi: 10.3389/fsurg.2022.853101

[8]

Zeng J., Xu C., Xu G., Wang D., et al. The Global Status of Research in Ankle Fracture: A Bibliometric and Visualized Study // Front Surg. 2022. Vol. 14, № 9. Р. 853101. doi: 10.3389/fsurg.2022.853101

[9]

Solod EI, Zagorodnij NV, Lazarev AF, i dr. Vozmozhnosti operativnogo lecheniya perelomov lodyzhek pri problemah kozhnyh pokrovov oblasti golenostopnogo sustava. Ural’skij medicinskij zhurnal. 2019;(12):96–101. (In Russ).

[10]

Солод Э.И., Загородний Н.В., Лазарев А.Ф., и др. Возможности оперативного лечения переломов лодыжек при проблемах кожных покровов области голеностопного сустава // Уральский медицинский журнал. 2019. № 12. С. 96–101.

[11]

Samohvalov IM, Borisov MB, Magomedov NB, Ganin EV. Opyt 3D-modelirovaniya v travmatologii i ortopedii. Klinicheskaya patofiziologiya. 2020;26(1):52–58. (In Russ).

[12]

Самохвалов И.М., Борисов М.Б., Магомедов Н.Б., Ганин Е.В. Опыт 3D-моделирования в травматологии и ортопедии // Клиническая патофизиология. 2020. Т. 26, № 1. С. 52–58.

[13]

Karlova NA, Bojcova MG, Zorin YaP. Organizaciya samostoyatel’noj raboty ordinatorov po special’nosti «Rentgenologiya» s elementami simulyacionnogo obucheniya. Vizualizaciya v medicine. 2020;2(4):3–6. (In Russ).

[14]

Карлова Н.А., Бойцова М.Г., Зорин Я.П. Организация самостоятельной работы ординаторов по специальности «Рентгенология» с элементами симуляционного обучения // Визуализация в медицине. 2020. Т. 2, № 4. С. 3–6.

[15]

Vencerova NV, Potlov AYu, Tymchuk TM. Tkaneimitiruyushchie fantomy v medicine i biologii. V Mezhdunarodnaya nauchno-prakticheskaya konferenciya «Virtual’noe modelirovanie, prototipirovanie i promyshlennyj dizajn»; 2018; Tambov. Available from: https://www.elibrary.ru/ip_restricted.asp?rpage=https%3A%2F%2Fwww%2Eelibrary%2Eru%2Fitem%2Easp%3Fid%3D37068545 (In Russ).

[16]

Венцерова Н.В., Потлов А.Ю., Тымчук Т.М. Тканеимитирующие фантомы в медицине и биологии // V Международная научно-практическая конференция «Виртуальное моделирование, прототипирование и промышленный дизайн»; 2018; Тамбов. Режим доступа: https://www.elibrary.ru/ip_restricted.asp?rpage=https%3A%2F%2Fwww%2Eelibrary%2Eru%2Fitem%2Easp%3Fid%3D37068545

[17]

Soldatov YuP. Simulyatory sobstvennoj konstrukcii v obuchenii vrachej travmatologov-ortopedov. Virtual’nye tekhnologii v medicine. 2019;(2):63. (In Russ). doi: 10.46594/2687-0037_2019_2_63

[18]

Солдатов Ю.П. Симуляторы собственной конструкции в обучении врачей травматологов-ортопедов // Виртуальные технологии в медицине. 2019. № 2. С. 63. doi: 10.46594/2687-0037_2019_2_63

[19]

Kushnarev SV, Zheleznyak IS, Kravchuk VN, i dr. Primenenie 3D-modelej serdca, sozdannyh na osnove DICOM-izobrazhenij, v medicinskoj praktike. Luchevaya diagnostika i terapiya. 2020;11(3):7–13. (In Russ). doi: 10.22328/2079-5343-2020-11-3-7-13

[20]

Кушнарев С.В., Железняк И.С., Кравчук В.Н., и др. Применение 3D-моделей сердца, созданных на основе DICOM-изображений, в медицинской практике // Лучевая диагностика и терапия. 2020. Т. 11, № 3. С. 7–13. doi: 10.22328/2079-5343-2020-11-3-7-13

[21]

Ramos SMO, Thomas S, Berdeguez MBT, et al. Anthropomorphic phantoms-potential for more studies and training in radiology. Int J Radiol Radiat Ther. 2017;2(4):101–104. doi: 10.15406/ijrrt.2017.02.00033

[22]

Ramos S.M.O., Thomas S., Berdeguez M.B.T., et al. Anthropomorphic phantoms-potential for more studies and training in radiology // Int J Radiol Radiat Ther. 2017. Vol. 2, № 4. Р. 101–104. doi: 10.15406/ijrrt.2017.02.00033

[23]

Bondarenko EV, Khoronko LYa. Simulation training as a leading direction in the development of medicine. Mir nauki. Pedagogika i psihologiya. 2022;10(3):1–7. (In Russ).

[24]

Бондаренко Е.В., Хоронько Л.Я. Симуляционное обучение как ведущее направление развития медицины // Мир науки. Педагогика и психология. 2022. Т. 10, № 3. С. 1–7.

[25]

X-Ray Phantom Foot, transparent [Internet] [cited 2023 February 19]. Available from: www.erler-zimmer.de/shop/en/9318?c=2241

[26]

X-Ray Phantom Foot, transparent [Internet] [дата обращения 19.02.2023]. Доступ по ссылке: www.erler-zimmer.de/shop/en/9318?c=2241

[27]

Gromov AI, Nizovcova LA, Petryajkin AV, i dr. Simulyacionnye moduli v obuchenii i kvalifikacionnoj ocenke vrachej i srednih medrabotnikov po special’nosti «Rentgenologiya». Virtual’nye tekhnologii v medicine. 2015;2(14):43–44. (In Russ).

[28]

Громов А.И., Низовцова Л.А., Петряйкин А.В., и др. Симуляционные модули в обучении и квалификационной оценке врачей и средних медработников по специальности «Рентгенология» // Виртуальные технологии в медицине. 2015. Т. 2, № 14. С. 43–44.

[29]

Paramonov TA, Markin IV, An VR, i dr. Medicinskij simulyator dlya podgotovki vrachej-travmatologov: eksperimental’naya rabota. Vestnik travmatologii i ortopedii im. N.N. Priorova. 2022;29(3):279–288. (In Russ). doi: 10.17816/vto110979

[30]

Парамонов Т.А., Маркин И.В., Ан В.Р., и др. Медицинский симулятор для подготовки врачей-травматологов: экспериментальная работа // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2022. Т. 29, № 3. С. 279–288. doi: 10.17816/vto110979

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/