Comparative analysis of changes in the desmal and chondral structures of spinal motion segment at various methods for posterior spine fixation in experiment

Artyom E. Krivoshein , V. P Konev , S. V Kolesov , V. A Byval’tsev , A. I Kaz’min

N.N. Priorov Journal of Traumatology and Orthopedics ›› 2017, Vol. 24 ›› Issue (4) : 25 -30.

PDF
N.N. Priorov Journal of Traumatology and Orthopedics ›› 2017, Vol. 24 ›› Issue (4) : 25 -30. DOI: 10.17816/vto201724425-30
Articles
research-article

Comparative analysis of changes in the desmal and chondral structures of spinal motion segment at various methods for posterior spine fixation in experiment

Author information +
History +
PDF

Abstract

Purpose: to elaborate the criteria for the assessment of the degree of spinal motion segment degradation at various methods for posterior spine fixation in experiment. Material and methods. The study included mongrel dogs with body mass of 12±1.5 kg aged 21±3 months. Transpedicular lumbar spine fixation was performed with either rigid titanium alloy rods (1st group, n=5) or dynamic nitinol rods (2nd group, n=5). X-ray examination and morphologic study of the structural elements of spinal motion segment (SME) were performed to all animals in 3, 6, 12, 18 and 24 months after surgery. Results. Functional examination showed that in both groups the range of motion made up 18±1.2° preoperatively. In the 1st group of animals the range of motion in the operated SME made up 0±0.03°. In the second group the range of motion was preserved throughout the experiment and averaged 15±1.3° that made up 78.9% of the preoperative range. In both groups the disc height at the fixation level was constant throughout the experiment and made up 0,3±0.003 cm pre- and postoperatively. Obtained roentgenologic and morphologic data indicated that posterior dynamic spine fixation with nitinol rods ensured more balanced distribution of loads on the supportive elements of the construction and enabled prevent the development of the adjacent segments degeneration. Based on the study results the criteria for the assessment of the degree of the facet joints and discs degradation were formulated.

Keywords

spinal motion segment / nitinol / dynamic fixation / rigid fixation

Cite this article

Download citation ▾
Artyom E. Krivoshein, V. P Konev, S. V Kolesov, V. A Byval’tsev, A. I Kaz’min. Comparative analysis of changes in the desmal and chondral structures of spinal motion segment at various methods for posterior spine fixation in experiment. N.N. Priorov Journal of Traumatology and Orthopedics, 2017, 24(4): 25-30 DOI:10.17816/vto201724425-30

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Мартынова М.А. Сравнительный анализ исходов хирургического лечения пациентов с нестабильностью позвоночно-двигательного сегмента поясничного отдела позвоночника с применением технологий трансфораминального межтелового (TLIF) и прямого бокового спондилодеза (DLIF): Дис. … канд. мед. наук. М.; 2016.

[2]

Симонович А.Е. Применение инструментария DAYNESYS для динамической фиксации поясничного отдела позвоночника при его дегенеративных поражениях. Хирургия позвоночника. 2004; 1: 60-6.

[3]

Макиров С.К., Юз А.А., Джахаров М.Т., Гусев С.С. Современные возможности задней динамической стабилизации позвоночника в профилактике синдрома смежного уровня: обзор литературы. Хирургия позвоночника. 2015; 12 (1): 46-62.

[4]

Макаров С.Н. Влияние методов коррекции расстройств микроциркуляции спинномозговых корешков и различных способов фиксации на исход оперативного лечения поясничного остеохондроза: Дис. … канд. мед. наук. М.; 2014.

[5]

Симонович А.Е., Маркин С.П., Нуралиев Х.А., Снежков И.И. Влияние динамической фиксации поясничных позвоночных сегментов на их подвижность. Хирургия позвоночника. 2008; 4: 30-6.

[6]

Коллеров М.Ю., Гусев Д.Е., Шаронов А.А. и др. Выбор режимов термической обработки при производстве медицинского инструмента и имплантатов с памятью формы из сплава ТН1. Технология легких сплавов. 2007; 3: 52-56.

[7]

Боровиков В. STATIST1CA: искусство анализа данных на компьютере. Серия: Для профессионалов. Санкт- Петербург: Питер; 2001.

[8]

Гланц С. Медико-биологическая статистика. М.: Практика; 1999.

[9]

Rao R.D., David K.S., Wang M. Biomechanical changes at adjacent segments following anterior lumbar interbody fusion using tapered cases. Spine. 2005; 30: 2772-6.

[10]

Sudo H., Oda I., Adumi K. et al. Biomechanical study on the effect of five different lumbar reconstruction techniques on adjacent-level intradiscal pressure and lamina strain. J. Neurosurg. Spine. 2006; 5: 150-155.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/