Magnetic Resonance Imaging of the Whole Body (DWIBS). Potentialities and Perspectives for Application in Bone Pathology

A. K Morozov , A. N Makhson , I. N Karpov

N.N. Priorov Journal of Traumatology and Orthopedics ›› 2015, Vol. 22 ›› Issue (2) : 19 -24.

PDF
N.N. Priorov Journal of Traumatology and Orthopedics ›› 2015, Vol. 22 ›› Issue (2) : 19 -24. DOI: 10.17816/vto201522219-24
Articles
research-article

Magnetic Resonance Imaging of the Whole Body (DWIBS). Potentialities and Perspectives for Application in Bone Pathology

Author information +
History +
PDF

Abstract

The purpose of the study was to determine the role and place of whole body MRI with DWIBS in diagnosis of human loco-motor system oncologic pathology. Two hundred fifty six patients with presumptive diagnosis of oncologic disease were examined. Obtained signal was evaluated by true signal intensity scale in minimal examination volume (voxel), either drawn through the volumetric lesion or in an isolated area of arbitrary shape. Study results were verified using standard MRI protocols (T1, T2, STIR), contrast enhancement, MSCT, radionuclide and morphologic examination. High sensitivity of the technique to pathologically changed tissues with reduced water diffusion coefficient was demonstrated. Magnetic resonance diffusion-weighted whole-body imaging with DWIBS may be recommended as noninvasive screening technique for the diagnosis of both primary and secondary (metastases) oncologic process.

Keywords

DWIBS / radiation diagnosis / neoplasm / metastasis / inflammation / MRT / CT / roentgenography / diffusion-weighted imaging / DWIBS

Cite this article

Download citation ▾
A. K Morozov, A. N Makhson, I. N Karpov. Magnetic Resonance Imaging of the Whole Body (DWIBS). Potentialities and Perspectives for Application in Bone Pathology. N.N. Priorov Journal of Traumatology and Orthopedics, 2015, 22(2): 19-24 DOI:10.17816/vto201522219-24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lecouvet F.E., Malghem J., Michaux L., Maldague B., Ferrant A., Michaux J.L., Vande Berg B.C. Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey. Br. J. Haematol. 1999; 106 (1): 35-9.

[2]

Krishnamurthy G.T., Tubis M., Hiss J., Blahd W.H. Distribution pattern of metastatic bone disease. JAMA. 1977; 237 (23): 837-42.

[3]

Heywang-Kobrunner S.H. Contrast-enhanced magnetic resonance imaging of the breast. Invest. Radiol. 1994; 29; 94-100.

[4]

Imamura F., Kuriyama K., Seto T., Hasegawa Y., Nakayama T., Nakamura Si., Horai T. Detection of bone marrow metastases of small cell lung cancer with magnetic resonance imaging: early diagnosis before destruction of osseous structure and implications for staging. Lung Cancer. 2000; 27 (3): 189-97.

[5]

Daldrup-Link H.E., Franzius C., Link T.M., Laukamp D., Sciuk J., Jürgens H. et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am. J. Roentgenol. 2001; 177 (1): 229-36.

[6]

Gerwin P.S., Maximilian F.R., Andrea B. Whole-body imaging of the musculoskeletal system: the value of MR imaging Skeletal. Radiol. 2007; 36 (12): 1109-19.

[7]

Lauenstein T., Freudenberg L., Goehde S. Whole-body MRI using a rolling table platform for the detection of bone methastases. Eur. Radiol. 2009; 12: 2011-9.

[8]

Eustace S., Tello R., De Carvalho V., Carey J., Wroblicka J.T., Melhem E.R., Yucel E.K. A comparison of whole body turbo STIR MR imaging and planar 99m TC-methylenediphosphonate cintigraphy in the examination of patients with suspected skeletal metastases. AMR Am. J. Roentgenol. 1997; 169: 1655-61.

[9]

Weatherall P.T., Maale G.E., Mendelsohn D.B., Sherry C.S., Erdman W.E., Pascoe H.R. Chondroblastoma: classic and confusing appearance at MRI. Radiology. 1994; 190 (2): 467-74.

[10]

Moschetta M., Telegrafo M., Rella L., Capolongo F., Ianora A.A.S., Angelelli G. MR evaluation of breast lesions obtained by diffusion-weighted imaging with background body signal suppression (DWIBS) and correlation with histological findings. Magnetic Resonance Imaging. 2014; 32: 605-9.

[11]

Murphey M.D., wan Jaovisidha S., Temple H.T., Gannon F.H., Jelinek J.S., Malawer M.M. Telangiectatic osteosarcoma: radiologic-pathologic comparison. Radiology. 2003; 229 (2): 545-53.

[12]

Frick M.A., Sundaram M., Unni K.K., Inwards C.Y., Fabbri N., Trentani F. et al. Imaging findings in desmoplastic fibroma of bone: distinctive T2 characteristics. AJR Am. J. Roentgenol. 2005; 184 (6): 1762-7.

[13]

Wu Q., Yang R., Zhou F., Hu Y. Comparison of whole-body MRI and skeletal scintigraphy for detection of bone metastatic tumors: A meta-analysis. Surg. Oncol. 2013; 22 (4): 261-6. doi.org/10.1016/j.suronc. 2013.10.004.

[14]

Khoo M.M., Tyler P.A., Saifuddin A., Padhani A.R. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal. Radiol. 2011; 40 (6): 665-81.

[15]

Neubauer H., Evangelista L., Hassold N., Winkler B., Schlegel P. G., Köstler H., Hahn D., Beer M. Diffusion-weighted MRI for detection and differentiation of musculoskeletal tumorous and tumor-like lesions in pediatric patients. World J. Pediatr. 2012; 8 (4): 342-9.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

61

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/