THE ALTERATION OF COMPOSITION OF FATTY ACIDS AND INSULIN-BINDING ACTIVITY OF CELLS IN CONDITIONS OF OXIDATIVE STRESS UNDER EXPERIMENTAL DIABETES MELLITUS

Nina P. Mikaelyan , A. E Gurina , A. A Terentev , A. A Mikaelyan

Russian Medicine ›› 2017, Vol. 23 ›› Issue (6) : 308 -311.

PDF
Russian Medicine ›› 2017, Vol. 23 ›› Issue (6) : 308 -311. DOI: 10.18821/0869-2106-2017-23-6-308-311
Articles
research-article

THE ALTERATION OF COMPOSITION OF FATTY ACIDS AND INSULIN-BINDING ACTIVITY OF CELLS IN CONDITIONS OF OXIDATIVE STRESS UNDER EXPERIMENTAL DIABETES MELLITUS

Author information +
History +
PDF

Abstract

The parallel study of effect of experimental diabetes mellitus on the level of lipids and composition of fatty acids in blood and homogenates of liver and insulin-binding activity of cells in conditions of oxidative stress demonstrated that in rats already at early period of development of diabetes, alongside with hyperlipoproteinemia, hypertriglyceridemia and hypercholesterolemia significant alterations are marked in structure of fatty acids and homogenates of liver. These alterations are accompanied by peroxide oxidation of lipids and decreasing of activity of enzymes-antioxidants and also by decreasing of insulin-binding activity of cells. Under experimental diabetes mellitus, a significant increasing of level of saturated fatty acids, especially palmitic fatty acid results in decreasing of levels of mono-unsaturated fatty acids (at the expense of oleic fatty acid) that significantly differs corresponding specter in patients with diabetes. The increasing of concentration of eicosapentaenoic and docosahexaenoic acids is accompanied by decreasing of total content of fatty acid Omega-3 at the expense of alfa-linoleic fatty acid. At that, the level of fatty acid Omega-6 reliably decreases both in erythrocytes and homogenates of liver. The results of study also testify that already at early stages of development of diabetes mellitus alterations in pool of fatty acids of erythrocytes and homogenates of liver are similar (with slight differences) and in all analyzed tissues disorder of metabolism of fatty acids has an anti-sclerotic direction.

Keywords

diabetes mellitus / pathogenesis / fatty acids / oxidative stress / insulin receptors

Cite this article

Download citation ▾
Nina P. Mikaelyan, A. E Gurina, A. A Terentev, A. A Mikaelyan. THE ALTERATION OF COMPOSITION OF FATTY ACIDS AND INSULIN-BINDING ACTIVITY OF CELLS IN CONDITIONS OF OXIDATIVE STRESS UNDER EXPERIMENTAL DIABETES MELLITUS. Russian Medicine, 2017, 23(6): 308-311 DOI:10.18821/0869-2106-2017-23-6-308-311

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Новгородцева Т.П., Караман Ю.К., Жукова Н.В., Лобанова Е.Г., Антонюк М.В. Особенности состава жирных кислот крови и уровень оксилипинов у пациентов с метаболическим синдромом. Клиническая лабораторная диагностика. 2010; (10): 22-5.

[2]

Титов В.Н., Рожкова Т.А., Амелюшкина В.А. Клиническая биохимия гиперлипидемии и гипергликемии. Инсулин и метаболизм жирных кислот. Гипогликемическое действие гиполипидемических препаратов. Клиническая лабораторная диагностика. 2014; (3): 4-13.

[3]

Phinney S.D. Fatty acids, inflammation and the metabolic syndrome. Am. J. Clin. Nutr. 2005; 82(6): 1151-2

[4]

Микаелян Н.П., Князев Ю.А., Петрухин В.А., Микаелян А.В. Инсулинрецепторное взаимодействие в лимфоцитах и эритроцитах у беременных с гестационным сахарным диабетом. Сахарный диабет. 2006; (1): 15-7.

[5]

Макаренко Е.В. АТФ-азная активность эритроцитов при хронических заболеваниях печени и желудка. Лабораторное дело. 1986; (3): 14-7.

[6]

Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem. Med. 1976; 15(2): 212-6

[7]

Королюк М.А., Иванова Л.И., Майорова И.Г. Метод определения активности каталазы. Лабораторное дело. 1988; (1): 16-9

[8]

Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957; 226(1): 497-509.

[9]

Ichihara K., Fukubayashi Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 2010; 51(3): 635-40.

[10]

Rodríguez-Carrizalez A.D., Castellanos-González J.A., Martínez-Romero E.C., Miller-Arrevillaga G., Villa-Hernández D., Hernández-Godínez P.P. et al. Oxidants, antioxidants and mitochondrial function in non-proliferative diabetic retinopathy. J. Diabetes. 2014; 6(2): 167-75.

[11]

Hink U., Tsilimingas N., Wendt M., Münzel T. Mechanisms underlying endothelial dysfunction in diabetes mellitus: therapeutic implications. Treat. Endocrinol. 2003; 2(5): 293-304.

[12]

Harris W.S., Miller M., Tighe A.P., Davidson M.H., Schaefer E.J. Omega-3 fatty acids and coronary heart disease risk: clinical and mechanistic perspectives. Atherosclerosis. 2008; (197): 12-24.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/