Right heart status in patients with COVID-19: a literature review
Anton A. Karasev , Natalia G. Poteshkina , Maryana A. Lysenko , Natalia S. Krylova , Anna M. Svanadze , Maria Y. Maslova , Irina P. Beloglazova
Russian Medicine ›› 2024, Vol. 30 ›› Issue (3) : 260 -271.
Right heart status in patients with COVID-19: a literature review
The COVID-19 pandemic has placed unprecedented strain on healthcare worldwide. Considering that the main pathophysiological processes causing the severe and extremely severe course of the disease are COVID-19-associated pneumonia and hypercoagulation, the hemodynamics of pulmonary circulation and the right heart was of particular concern. Echocardiography has become the main method for assessing the condition of the right heart in COVID-19 patients, owing to its availability and speed of the investigation. However, echocardiographic assessment of the right heart is challenging, and data in the available literature are conflicting.
The functioning of the right parts of the heart regarding normality and in conditions of COVID-19 infection is shown. The results of studies aimed at assessing the structural, hemodynamic, and functional parameters of the right heart during the acute course of the disease and in the long-term period — from a month to a year — were studied. Currently, there is no consensus on the effect of COVID-19 on the condition of the right side of the heart in the long term and, accordingly, further monitoring of patients who have had COVID-19, especially severe and extremely severe cases, is required.
right ventricle / COVID-19 / echocardiography / long-covid
| [1] |
Data.who.int [Internet]. WHO Coronavirus (COVID-19) dashboard > Deaths [Dashboard] [cited 2023 March 01]. Available from: https://data.who.int/dashboards/covid19/deaths |
| [2] |
Data.who.int [Internet]. WHO Coronavirus (COVID-19) dashboard > Deaths [Dashboard]. Доступ по ссылке: https://data.who.int/dashboards/covid19/deaths Дата обращения 01.03.2023. |
| [3] |
Narota A, Puri G, Singh V, et al. COVID-19 and ARDS: update on preventive and therapeutic venues. Curr Mol Med. 2022;22(4): 312–324. doi: 10.2174/1566524021666210408103921 |
| [4] |
Narota A., Puri G., Singh V.P., et al. COVID-19 and ARDS: update on preventive and therapeutic venues // Curr Mol Med. 2022. Vol. 22, N 4. P. 312–324. doi: 10.2174/1566524021666210408103921 |
| [5] |
Khatri A, Wallach F. Coronavirus disease 2019 (Covid-19) presenting as purulent fulminant myopericarditis and cardiac tamponade: a case report and literature. Heart Lung. 2020;49(6):858–863. doi: 10.1016/j.hrtlng.2020.06.003 |
| [6] |
Khatri A., Wallach F. Coronavirus disease 2019 (Covid-19) presenting as purulent fulminant myopericarditis and cardiac tamponade: a case report and literature // Heart and Lung. 2020. Vol. 49, N 6. P. 858–863. doi: 10.1016/j.hrtlng.2020.06.003 |
| [7] |
Azevedo RB, Botelho BG, Hollanda JVG, et al. Covid-19 and the cardiovascular system: a comprehensive review. J Hum Hypertens. 2021;35(1):4–11. doi: 10.1038/s41371-020-0387-4 |
| [8] |
Azevedo R.B., Botelho B.G., Hollanda J.V.G., et al. Covid-19 and the cardiovascular system: a comprehensive review // J Hum Hypertens. 2021. Vol. 35, N 1. P. 4–11. doi: 10.1038/s41371-020-0387-4 |
| [9] |
Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819–824. doi: 10.1001/jamacardio.2020.1096 |
| [10] |
Inciardi R.M., Lupi L., Zaccone G., et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19) // JAMA Cardiol. 2020. Vol. 5, N 7. P. 819–824. doi: 10.1001/jamacardio.2020.1096 |
| [11] |
Pietsch H, Escher F, Aleshcheva G, et al. Proof of SARS-CoV-2 genomes in endomyocardial biopsy with latency after acute infection. Int J Infect Dis. 2021;102:70–72. doi: 10.1016/j.ijid.2020.10.012 |
| [12] |
Pietsch H., Escher F., Aleshcheva G., et al. Proof of SARS-CoV-2 genomes in endomyocardial biopsy with latency after acute infection // 2021. Vol. 102. P. 70–72. doi: 10.1016/j.ijid.2020.10.012 |
| [13] |
Hasanvand A. COVID-19 and the role of cytokines in this disease. Inflammopharmacology. 2022;30(3):789–798. doi: 10.1007/s10787-022-00992-2 |
| [14] |
Hasanvand A. COVID-19 and the role of cytokines in this disease // Inflammopharmacology. 2022. Vol. 30, N 3. P. 789–798. doi: 10.1007/s10787-022-00992-2 |
| [15] |
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. Corrected and republished from: Lancet. 2020;395(10229):1038. doi: 10.1016/S0140-6736(20)30566-3 |
| [16] |
Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study // Lancet. 2020. Vol. 395, N 10229. P. 1054–1062. Corrected and republished from: Lancet. 2020. Vol. 395, N 10229. P. 1038. doi: 10.1016/S0140-6736(20)30566-3 |
| [17] |
Kichloo A, Dettloff K, Aljadah M, et al. COVID-19 and hypercoagulability: a review. Clin Appl Thromb Hemost. 2020;26:1076029620962853. doi: 10.1177/1076029620962853 |
| [18] |
Kichloo A., Dettloff K., Aljadah M., et al. COVID-19 and hypercoagulability: a review // Clin Appl Thromb Hemost. 2020. Vol. 26. P. 1076029620962853. doi: 10.1177/1076029620962853 |
| [19] |
Mitchell WB. Thromboinflammation in COVID-19 acute lung injury. Paediatr Respir Rev. 2020;35:20–24. doi: 10.1016/j.prrv.2020.06.004 |
| [20] |
Mitchell W.B. Thromboinflammation in COVID-19 acute lung injury // Paediatr Respir Rev. 2020. Vol. 35. P. 20–24. doi: 10.1016/j.prrv.2020.06.004 |
| [21] |
Manolis AS, Manolis TA, Manolis AA, et al. COVID-19 infection: viral macro- and micro-vascular coagulopathy and thromboembolism/prophylactic and therapeutic management. J Cardiovasc Pharmacol Ther. 2021;26(1):12–24. doi: 10.1177/1074248420958973 |
| [22] |
Manolis A.S., Manolis T.A., Manolis A.A., et al. COVID-19 infection: viral macro- and micro-vascular coagulopathy and thromboembolism/prophylactic and therapeutic management // J Cardiovasc Pharmacol Ther. 2021. Vol. 26, N 1. P. 12–24. doi: 10.1177/1074248420958973 |
| [23] |
Zhao YH, Zhao L, Yang XC, Wang P. Cardiovascular complications of SARS-CoV-2 infection (COVID-19): a systematic review and meta-analysis. Rev Cardiovasc Med. 2021;22(1): 159–165. doi: 10.31083/j.rcm.2021.01.238 |
| [24] |
Zhao Y.H., Zhao L., Yang X.C., Wang P. Cardiovascular complications of SARS-CoV-2 infection (COVID-19): a systematic review and meta-analysis // Rev Cardiovasc Med. 2021. Vol. 22, N 1. P. 159–165. doi: 10.31083/j.rcm.2021.01.238 |
| [25] |
Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020;5(7):831–840. doi: 10.1001/jamacardio.2020.1286 |
| [26] |
Madjid M., Safavi-Naeini P., Solomon S.D., Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review // 2020. Vol. 5, N 7. P. 831–840. doi: 10.1001/jamacardio.2020.1286 |
| [27] |
Suh YJ, Hong H, Ohana M, et al. Pulmonary embolism and deep vein thrombosis in COVID-19: a systematic review and meta-analysis. Radiology. 2021;298(2):E70–E80. doi: 10.1148/radiol.2020203557 |
| [28] |
Suh Y.J., Hong H., Ohana M., et al. Pulmonary embolism and deep vein thrombosis in COVID-19: a systematic review and meta-analysis // Radiology. 2021. Vol. 298, N 2. P. E70–E80. doi: 10.1148/radiol.2020203557 |
| [29] |
Prasitlumkum N, Chokesuwattanaskul R, Thongprayoon C, et al. Incidence of myocardial injury in COVID-19-infected patients: a systematic review and meta-analysis. Diseases. 2020;8(4):40. doi: 10.3390/diseases8040040 |
| [30] |
Prasitlumkum N., Chokesuwattanaskul R., Thongprayoon C., et al. Incidence of myocardial injury in COVID-19-infected patients: a systematic review and meta-analysis // Diseases. 2020. Vol. 8, N 4. P. 40. doi: 10.3390/diseases8040040 |
| [31] |
Kamath S, Gomah MT, Stepman G, et al. COVID-19-associated acute myocarditis: risk factors, clinical outcomes, and implications for early detection and management. Cureus. 2023;15(9):e44617. doi: 10.7759/cureus.44617 |
| [32] |
Kamath S., Gomah M.T., Stepman G., et al. COVID-19-associated acute myocarditis: risk factors, clinical outcomes, and implications for early detection and management // Cureus. 2023. Vol. 15, N 9. P. e44617. doi: 10.7759/cureus.44617 |
| [33] |
Shah RM, Shah M, Shah S, et al. Takotsubo syndrome and COVID-19: associations and implications. Curr Probl Cardiol. 2021;46(3):100763. doi: 10.1016/j.cpcardiol.2020.100763 |
| [34] |
Shah R.M., Shah M., Shah S., et al. Takotsubo syndrome and COVID-19: associations and implications // Curr Probl Cardiol. 2021. Vol. 46, N 3. P. 100763. doi: 10.1016/j.cpcardiol.2020.100763 |
| [35] |
John K, Lal A, Sharma N, et al. Presentation and outcome of myocardial infarction with non-obstructive coronary arteries in coronavirus disease 2019. World J Crit Care Med. 2022;11(3): 129–138. doi: 10.5492/wjccm.v11.i3.129 |
| [36] |
John K., Lal A., Sharma N., et al. Presentation and outcome of myocardial infarction with non-obstructive coronary arteries in coronavirus disease 2019 // World J Crit Care Med. 2022. Vol. 11, N 3. P. 129–138. doi: 10.5492/wjccm.v11.i3.129 |
| [37] |
Capotosto L, Nguyen BL, Ciardi MR, et al. Heart, COVID-19, and echocardiography. Echocardiography. 2020;37(9):1454–1464. doi: 10.1111/echo.14834 |
| [38] |
Capotosto L., Nguyen B.L., Ciardi M.R., et al. Heart, COVID-19, and echocardiography // Echocardiography. 2020. Vol. 37, N 9. P. 1454–1464. doi: 10.1111/echo.14834 |
| [39] |
Vonk Noordegraaf A, Chin KM, Haddad F, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J. 2019;53(1):1801900. doi: 10.1183/13993003.01900-2018 |
| [40] |
Vonk Noordegraaf A., Chin K.M., Haddad F., et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update // Eur Respir J. 2019. Vol. 53, N 1. P. 1801900. doi: 10.1183/13993003.01900-2018 |
| [41] |
Konstam MA, Kiernan MS, Bernstein D, et al. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation. 2018;137(20):e578–e622. doi: 10.1161/CIR.0000000000000560 |
| [42] |
Konstam M.A., Kiernan M.S., Bernstein D., et al. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association // Circulation. 2018. Vol. 137, N 20. P. e578–e622. doi: 10.1161/CIR.0000000000000560 |
| [43] |
Persichini R, Lai C, Teboul JL, et al. Venous return and mean systemic filling pressure: physiology and clinical applications. Crit Care. 2022;26(1):150. doi: 10.1186/s13054-022-04024-x |
| [44] |
Persichini R., Lai C., Teboul J.L., et al. Venous return and mean systemic filling pressure: physiology and clinical applications // Crit Care. 2022. Vol. 26, N 1. P. 150. doi: 10.1186/s13054-022-04024-x |
| [45] |
Chemla D, Castelain V, Zhu K, et al. Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension. Chest. 2013;143(5):1343–1350. doi: 10.1378/chest.12-1880 |
| [46] |
Chemla D., Castelain V., Zhu K., et al. Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension // Chest. 2013. Vol. 143, N 5. P. 1343–1350. doi: 10.1378/chest.12-1880 |
| [47] |
Islamova MR, Lazarev PV, Safarova AF, Kobalava ZhD. The value of right ventricular dysfunction and right ventricular — pulmonary artery coupling in chronic heart failure: the role of echocardiography. Kardiologiia. 2018;58(5):82–90. EDN: XNJCKD doi: 10.18087/cardio.2018.5.10124 |
| [48] |
Исламова М.Р., Лазарев П.В., Сафарова А.Ф., Кобалава Ж.Д. Значение дисфункции правого желудочка, правожелудочково-артериального сопряжения при хронической сердечной недостаточности: роль эхокардиографии // Кардиология. 2018. Т. 58, № 5. С. 82–90. EDN: XNJCKD doi: 10.18087/cardio.2018.5.10124 |
| [49] |
Sanz J, Sánchez-Quintana D, Bossone E, et al. Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(12):1463–1482. doi: 10.1016/j.jacc.2018.12.076 |
| [50] |
Sanz J., Sánchez-Quintana D., Bossone E., et al. Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review // J Am Coll Cardiol. 2019. Vol. 73, N 12. P. 1463–1482. doi: 10.1016/j.jacc.2018.12.076 |
| [51] |
Sylvester JT, Shimoda LA, Aaronson PI, et al. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92(1):367–520. Corrected and republished from: Physiol Rev. 2014;94(3):989. doi: 10.1152/physrev.00041.2010 |
| [52] |
Sylvester J.T., Shimoda L.A., Aaronson P.I., Ward J.P. Hypoxic pulmonary vasoconstriction // Physiol Rev. 2012. Vol. 92, N 1. P. 367–520. Corrected and republished from: Physiol Rev. 2014. Vol. 94, N 3. P. 989. doi: 10.1152/physrev.00041.2010 |
| [53] |
Zaidi A, Knight DS, Augustine DX, et al. Echocardiographic assessment of the right heart in adults: a practical guideline from the British Society of Echocardiography. Echo Res Pract. 2020;7(1):G19-G41. doi: 10.1530/ERP-19-0051 |
| [54] |
Zaidi A., Knight D.S., Augustine D.X., et al. Echocardiographic assessment of the right heart in adults: a practical guideline from the British Society of Echocardiography // Echo Res Pract. 2020. Vol. 7, N 1. P. G19–G41. doi: 10.1530/ERP-19-0051 |
| [55] |
Pastore MC, De Carli G, Mandoli GE, et al. The prognostic role of speckle tracking echocardiography in clinical practice: evidence and reference values from the literature. Heart Fail Rev. 2021;26(6):1371–1381. doi: 10.1007/s10741-020-09945-9 |
| [56] |
Pastore M.C., De Carli G., Mandoli G.E., et al. The prognostic role of speckle tracking echocardiography in clinical practice: evidence and reference values from the literature // Heart Fail Rev. 2021. Vol. 26, N 6. P. 1371–1381. doi: 10.1007/s10741-020-09945-9 |
| [57] |
Bonizzoli M, Cipani S, Lazzeri C, et al. Speckle tracking echocardiography and right ventricle dysfunction in acute respiratory distress syndrome a pilot study. Echocardiography. 2018;35(12):1982–1987. doi: 10.1111/echo.14153 |
| [58] |
Bonizzoli M., Cipani S., Lazzeri C., et al. Speckle tracking echocardiography and right ventricle dysfunction in acute respiratory distress syndrome a pilot study // Echocardiography. 2018. Vol. 35, N 12. P. 1982–1987. doi: 10.1111/echo.14153 |
| [59] |
Golukhova EZ, Slivneva IV, Rybka MM, et al. Right ventricular systolic dysfunction as a predictor of adverse outcome in patients with COVID-19. Kardiologiia. 2020;60(11):16–29. EDN: JZCOSW doi: 10.18087/cardio.2020.11.n1303 |
| [60] |
Голухова Е.З., Сливнева И.В., Рыбка М.М., и др. Систолическая дисфункция правого желудочка как предиктор неблагоприятного исхода у пациентов с COVID-19 // Кардиология. 2020. Т. 60, № 11. С. 16–29. EDN: JZCOSW doi: 10.18087/cardio.2020.11.n1303 |
| [61] |
Repessé X, Vieillard-Baron A. Right heart function during acute respiratory distress syndrome. Ann Transl Med. 2017;5(14):295. doi: 10.21037/atm.2017.06.66 |
| [62] |
Repessé X., Vieillard-Baron A. Right heart function during acute respiratory distress syndrome // Ann Transl Med. 2017. Vol. 5, N 14. P. 295. doi: 10.21037/atm.2017.06.66 |
| [63] |
McCall PJ, Willder JM, Stanley BL, et al. Right ventricular dysfunction in patients with COVID-19 pneumonitis whose lungs are mechanically ventilated: a multicentre prospective cohort study. Anaesthesia. 2022;77(7):772–784. doi: 10.1111/anae.15745 |
| [64] |
McCall P.J., Willder J.M., Stanley B.L., et al. Right ventricular dysfunction in patients with COVID-19 pneumonitis whose lungs are mechanically ventilated: a multicentre prospective cohort study // Anaesthesia. 2022. Vol. 77, N 7. P. 772–784. doi: 10.1111/anae.15745 |
| [65] |
Liu Y, Xie J, Gao P, et al. Swollen heart in COVID-19 patients who progress to critical illness: a perspective from echo-cardiologists. ESC Heart Fail. 2020;7(6):3621–3632. doi: 10.1002/ehf2.12873 |
| [66] |
Liu Y., Xie J., Gao P., et al. Swollen heart in COVID-19 patients who progress to critical illness: a perspective from echo-cardiologists // ESC Heart Fail. 2020. Vol. 7, N 6. P. 3621–3632. doi: 10.1002/ehf2.12873 |
| [67] |
Huang S, Vignon P, Mekontso-Dessap A, et al. Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study). Intensive Care Med. 2022;48(6):667–678. doi: 10.1007/s00134-022-06685-2 |
| [68] |
Huang S., Vignon P., Mekontso-Dessap A., et al. Echocardiography findings in COVID-19 patients admitted to intensive care units: a multi-national observational study (the ECHO-COVID study) // Intensive Care Med. 2022. Vol. 48, N 6. P. 667–678. doi: 10.1007/s00134-022-06685-2 |
| [69] |
Dweck MR, Bularga A, Hahn RT, et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging. 2020;21(9):949–958. doi: 10.1093/ehjci/jeaa178 |
| [70] |
Dweck M.R., Bularga A., Hahn R.T., et al. Global evaluation of echocardiography in patients with COVID-19 // Eur Heart J Cardiovasc Imaging. 2020. Vol. 21, N 9. P. 949–958. doi: 10.1093/ehjci/jeaa178 |
| [71] |
Kovtyukh IV, Gendlin GE, Nikitin IG. Dynamics of echocardiographic parameters in patients with severe COVID-19 during hospitalization. Russian Medicine. 2022;28:47–55. EDN: WLALPU doi: 10.17816/medjrf108904 |
| [72] |
Ковтюх И.В., Гендлин Г.Е., Никитин И.Г., и др. Показатели эхокардиографии у пациентов с тяжёлым течением COVID-19 на госпитальном этапе в динамике // Российский медицинский журнал. 2022. Т. 28, № 1. C. 47–55. EDN: WLALPU doi: 10.17816/medjrf108904 |
| [73] |
Arutyunov GP, Tarlovskaya EI, Arutyunov AG, et al. Comparative analysis of echocardiographic and electrocardiographic data of survivors and deceased patients with COVID-19 (sub-analysis of the international register “Dynamics analysis of comorbidities in SARS-CoV-2 survivors”). Russian Journal of Cardiology. 2022;27(3):9–17. EDN: IGGGMR doi: 10.15829/1560-4071-2022-4855 |
| [74] |
Арутюнов Г.П., Тарловская Е.И., Арутюнов А.Г., и др. Сравнительный анализ данных эхокардиографии и электрокардиографии выживших и умерших пациентов с COVID-19 (субанализ международного регистра «Анализ динамики коморбидных заболеваний у пациентов, перенесших инфицирование SARS-CoV-2») // Российский кардиологический журнал. 2022. Т. 27, № 3. С. 9–17. EDN: IGGGMR doi: 10.15829/1560-4071-2022-4855 |
| [75] |
Soulat-Dufour L, Fauvel C, Weizman O, et al. Prognostic value of right ventricular dilatation in patients with COVID-19: a multicentre study. Eur Heart J Cardiovasc Imaging. 2022;23(4): 569–577. doi: 10.1093/ehjci/jeab067 |
| [76] |
Soulat-Dufour L., Fauvel C., Weizman O., et al. Prognostic value of right ventricular dilatation in patients with COVID-19: a multicentre study // Eur Heart J Cardiovasc Imaging. 2022. Vol. 23, N 4. P. 569–577. doi: 10.1093/ehjci/jeab067 |
| [77] |
Kovtyukh IV, Gendlin GE, Nikitin IG, et al. The value of indicators characterizing the state of the cardiovascular system in assessing the hospital prognosis of COVID-19 patients. Kardiologiia. 2021;61(10):26–35. EDN: JEKZPN doi: 10.18087/cardio.2021.10.n1553 |
| [78] |
Ковтюх И.В., Гендлин Г.Е., Никитин И.Г., и др. Значение показателей, характеризующих состояние сердечно-сосудистой системы, в оценке госпитального прогноза у больных COVID-19 // Кардиология. 2021. Т. 61, № 10. C. 26–35. EDN: JEKZPN doi: 10.18087/cardio.2021.10.n1553 |
| [79] |
Golukhova EZ, Slivneva IV, Rybka MM, et al. Structural and functional сhanges of the right ventricle in COVID-19 according to echocardiography. Creative Cardiology. 2020;14(3):206–223. EDN: COFRGV doi: 10.24022/1997-3187-2020-14-3-206-223 |
| [80] |
Голухова Е.З., Сливнева И.В., Рыбка М.М., и др. Структурно-функциональные изменения правого желудочка при COVID-19 по данным эхокардиографии // Креативная кардиология. 2020. Т. 14, № 3. С. 206–223. EDN: COFRGV doi: 10.24022/1997-3187-2020-14-3-206-223 |
| [81] |
Li Y, Li H, Zhu S, et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19. JACC Cardiovasc Imaging. 2020;13(11):2287–2299. doi: 10.1016/j.jcmg.2020.04.014 |
| [82] |
Li Y., Li H., Zhu S., et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19 // JACC Cardiovasc Imaging. 2020. Vol. 13, N 11. P. 2287–2299. doi: 10.1016/j.jcmg.2020.04.014 |
| [83] |
Gibson LE, Fenza RD, Lang M, et al. Right ventricular strain is common in intubated COVID-19 patients and does not reflect severity of respiratory illness. J Intensive Care Med. 2021;36(8):900–909. doi: 10.1177/08850666211006335 |
| [84] |
Gibson L.E., Fenza R.D., Lang M., et al. Right ventricular strain is common in intubated COVID-19 patients and does not reflect severity of respiratory illness // J Intensive Care Med. 2021. Vol. 36, N 8. P. 900–909. doi: 10.1177/08850666211006335 |
| [85] |
Arutyunov GP, Tarlovskaya EI, Arutyunov AG, et al. Clinical features of post-COVID-19 period. Results of the international register “Dynamic analysis of comorbidities in SARS-CoV-2 survivors (AKTIV SARS-CoV-2)”. Data from 6-month follow-up. Russian Journal of Cardiology. 2021;26(10):86–98. EDN: ZAPSJL doi: 10.15829/1560-4071-2021-4708 |
| [86] |
Арутюнов Г.П., Тарловская Е.И., Арутюнов А.Г., и др. Клинические особенности постковидного периода. Результаты международного регистра «Анализ динамики Коморбидных заболеваний у пациенТов, перенесшИх инфицироВание SARS-CoV-2 (АКТИВ SARSCoV-2)». Предварительные данные (6 месяцев наблюдения) // Российский кардиологический журнал. 2021. Т. 26, № 10. С. 86–98. EDN: ZAPSJL doi: 10.15829/1560-4071-2021-4708 |
| [87] |
Arutyunov GP, Tarlovskaya EI, Arutyunov AG, et al. ACTIV SARS-CoV-2 registry (Analysis of Chronic Non-infectious Diseases Dynamics after COVID-19 Infection in Adult Patients). Assessment of impact of combined original comorbid diseases in patients with COVID-19 on the prognosis. Terapevticheskii arkhiv. 2022;94(1): 32–47. EDN: WQMDNC doi: 10.26442/00403660.2022.01.201320 |
| [88] |
Арутюнов Г.П., Тарловская Е.И., Арутюнов А.Г., и др. Регистр «Анализ динамики Коморбидных заболеваний у пациенТов, перенесшИх инфицироВание SARS-CoV-2» (АКТИВ). Оценка влияния комбинаций исходных сопутствующих заболеваний у пациентов с COVID-19 на прогноз // Терапевтический архив. 2022. Т. 94, № 1. C. 32–47. EDN: WQMDNC doi: 10.26442/00403660.2022.01.201320 |
| [89] |
Kobelev E, Bergen TA, Tarkova AR, et al. COVID-19 as a cause of chronic pulmonary hypertension: pathophysiological rationale and potential of instrumental investigations. Cardiovascular Therapy and Prevention. 2021;20(5):126–133. EDN: IDVYAF doi: 10.15829/1728-8800-2021-2844 |
| [90] |
Кобелев Е., Берген Т.А., Таркова А.Р., и др. COVID-19 как причина хронической лёгочной гипертензии: патофизиологическое обоснование и возможности инструментальной диагностики // Кардиоваскулярная терапия и профилактика. 2021. Т. 20, № 5. С. 126–133. EDN: IDVYAF doi: 10.15829/1728-8800-2021-2844 |
| [91] |
Taha HA, Elshafey BI, Abdullah TM, Salem HA. Study of pulmonary hypertension in post-COVID-19 patients by transthoracic echocardiography. The Egyptian Journal of Bronchology. 2023;17(1):27. doi: 10.1186/s43168-023-00201-w |
| [92] |
Taha H.A., Elshafey B.I., Abdullah T.M., Salem HA. Study of pulmonary hypertension in post-COVID-19 patients by transthoracic echocardiography // The Egyptian Journal of Bronchology. 2023. Vol. 17, N 1. P. 27. doi: 10.1186/s43168-023-00201-w |
| [93] |
Shirokov NE, Yaroslavskaya EI, Krinochkin DV, Osokina NA. Hidden systolic dysfunction of the right ventricle in patients with increased pulmonary vascular resistance 3 months after COVID-19 pneumonia. Kardiologiia. 2022;62(3):16–20. EDN: FBRMSM doi: 10.18087//cardio.2022.3.n1743 |
| [94] |
Широков Н.Е., Ярославская Е.И., Криночкин Д.В., Осокина Н.А. Скрытая систолическая дисфункция правого желудочка у пациентов с повышением лёгочного сосудистого сопротивления через 3 мес после COVID-19 пневмонии // Кардиология. 2022. Т. 62, № 3. С. 16–20. EDN: FBRMSM doi: 10.18087//cardio.2022.3.n1743 |
| [95] |
Ozer PK, Govdeli EA, Baykiz D, et al. Impairment of right ventricular longitudinal strain associated with severity of pneumonia in patients recovered from COVID-19. Int J Cardiovasc Imaging. 2021;37(8):2387–2397. doi: 10.1007/s10554-021-02214-2 |
| [96] |
Ozer P.K., Govdeli E.A., Baykiz D., et al. Impairment of right ventricular longitudinal strain associated with severity of pneumonia in patients recovered from COVID-19 // Int J Cardiovasc Imaging. 2021. Vol. 37, N 8. P. 2387–2397. doi: 10.1007/s10554-021-02214-2 |
| [97] |
Flores R, Pires O, Alves J, Pereira VH. An echocardiographic insight into post-COVID-19 symptoms. Cureus. 2023;15(4):e38039. doi: 10.7759/cureus.38039 |
| [98] |
Flores R., Pires O., Alves J., Pereira V.H. An echocardiographic insight into post-COVID-19 symptoms // 2023. Vol. 15, N 4. P. e38039. doi: 10.7759/cureus.38039 |
| [99] |
Yaroslavskaya EI, Krinochkin DV, Shirokov NE, et al. Comparison of clinical and echocardiographic parameters of patients with COVID-19 pneumonia three months and one year after discharge. Kardiologiia. 2022;62(1):13–23. EDN: FEAPJL doi: 10.18087/cardio.2022.1.n1859 |
| [100] |
Ярославская Е.И., Криночкин Д.В., Широков Н.Е., и др. Сравнение клинических и эхокардиографических показателей пациентов, перенесших пневмонию COVID-19, через три месяца и через год после выписки // Кардиология. 2022. Т. 62, № 1. С. 13–23. EDN: FEAPJL doi: 10.18087/cardio.2022.1.n1859 |
| [101] |
Wolters AEP, Wolters AJP, van Kraaij TDA, Kietselaer BLJH. Echocardiographic estimation of pulmonary hypertension in COVID-19 patients. Neth Heart J. 2022;30(11):510–518. doi: 10.1007/s12471-022-01702-x |
| [102] |
Wolters A.E.P., Wolters A.J.P., van Kraaij T.D.A., Kietselaer B.L.J.H. Echocardiographic estimation of pulmonary hypertension in COVID-19 patients // Neth Heart J. 2022. Vol. 30, N 11. P. 510–518. doi: 10.1007/s12471-022-01702-x |
| [103] |
Kersten J, Schellenberg J, Jerg A, et al. Strain echocardiography in acute COVID-19 and post-COVID syndrome: more than just a snapshot. Biomedicines. 2023;11(4):1236. doi: 10.3390/biomedicines11041236 |
| [104] |
Kersten J., Schellenberg J., Jerg A., et al. Strain echocardiography in acute COVID-19 and post-COVID syndrome: more than just a snapshot // Biomedicines. 2023. Vol. 11, N 4. P. 1236. doi: 10.3390/biomedicines11041236 |
| [105] |
Young KA, Krishna H, Jain V, et al. Serial left and right ventricular strain analysis in patients recovered from COVID-19. J Am Soc Echocardiogr. 2022;35(10):1055–1063. doi: 10.1016/j.echo.2022.06.007 |
| [106] |
Young K.A., Krishna H., Jain V., et al. Serial left and right ventricular strain analysis in patients recovered from COVID-19 // J Am Soc Echocardiogr. 2022. Vol. 35, N 10. P. 1055–1063. doi: 10.1016/j.echo.2022.06.007 |
| [107] |
Lysenko MA, Poteshkina NG, Karasev AA, et al. Right heart in patients after COVID-19-associated pneumonia: long-term results. The Journal of General Medicine. 2023;(2):97–105. EDN: SKUXFU doi: 10.24412/2071-5315-2023-12885 |
| [108] |
Лысенко М.А., Потешкина Н.Г., Карасёв А.А., и др. Состояние правых отделов сердца у пациентов, перенесших COVID-19-ассоциированную пневмонию: отдаленные результаты // Лечебное дело. 2023. № 2. С. 97–105. EDN: SKUXFU doi: 10.24412/2071-5315-2023-12885 |
| [109] |
Sonsoz MR, Guven G, Yildiz U, et al. Right atrial reservoir strain and right ventricular strain improves in patients recovered from hospitalisation for non-severe COVID-19. Acta Cardiol. 2023;78(4):400–408. doi: 10.1080/00015385.2022.2082734 |
| [110] |
Sonsoz M.R., Guven G., Yildiz U., et al. Right atrial reservoir strain and right ventricular strain improves in patients recovered from hospitalisation for non-severe COVID-19 // Acta Cardiol. 2023. Vol. 78, N 4. P. 400–408. doi: 10.1080/00015385.2022.2082734 |
Eco-Vector
/
| 〈 |
|
〉 |