Immunology of post-COVID syndrome
Sergey G. Sсherbak , Andrey M. Sarana , Dmitry A. Vologzhanin , Tatyana A. Kamilova , Aleksandr S. Golota , Stanislav V. Makarenko
Russian Medicine ›› 2023, Vol. 29 ›› Issue (1) : 43 -58.
Immunology of post-COVID syndrome
COVID-19, the disease caused by SARS-CoV-2, has diverse long-term consequences of varying severity after recovery from the acute phase. As survivorship and therefore the number of individuals with “long COVID” continue to increase, the prevalence, origins, and mechanisms of post-acute sequelae manifestation must be critically elucidated. The inappropriate and unique inflammatory response in the acute phase of COVID-19 causes severe respiratory symptoms, which can be subsequently accompanied by multiple-organ damage, affecting the brain, heart, kidneys, etc. This review examines the role of an unregulated antigen-specific immune response to COVID-19 in the onset and development of its consequences. We discuss the potential role of virus persistence in tissue reservoirs, unresolved inflammation, cytokine hyperproduction, tissue damage, and molecular mimicry and autoimmunity in the pathogenesis of post-COVID syndrome — the induction and maintenance of imbalanced immune responses after the resolution of acute COVID-19.
consequences of COVID-19 / post-COVID syndrome / long COVID / post-infection syndrome / long-term post-COVID symptoms / biomarker / immunity / autoimmunity / autoantibodies
| [1] |
Newell KL, Waickman AT. Inflammation, immunity, and antigen persistence in post-acute sequelae of SARS-CoV-2 infectionImmunity and inflammaion in post-acute sequelae of SARS-CoV-2 infection. Curr Opin Immunol. 2022;77:102228. doi: 10.1016/j.coi.2022.102228 |
| [2] |
Newell K.L., Waickman A.T. Inflammation, immunity, and antigen persistence in post-acute sequelae of SARS-CoV-2 infectionImmunity and inflammaion in post-acute sequelae of SARS-CoV-2 infection // Curr Opin Immunol. 2022. Vol. 77. P. 102228. doi: 10.1016/j.coi.2022.102228 |
| [3] |
Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndromes. Nat Med. 2022;28(5):911–923. doi: 10.1038/s41591-022-01810-6 |
| [4] |
Choutka J., Jansari V., Hornig M., Iwasaki A. Unexplained post-acute infection syndromes // Nat Med. 2022. Vol. 28, N 5. P. 911–923. doi: 10.1038/s41591-022-01810-6 |
| [5] |
Davis HE, McCorkell L, Moore Vogel J, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;13:1–14. doi: 10.1038/s41579-022-00846-2 |
| [6] |
Davis H.E., McCorkell L., Moore Vogel J., Topol E.J. Long COVID: major findings, mechanisms and recommendations // Nat Rev Microbiol. 2023. Vol. 13. P. 1–14. doi: 10.1038/s41579-022-00846-2 |
| [7] |
Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259–264. doi: 10.1038/s41586-021-03553-9 |
| [8] |
Al-Aly Z., Xie Y., Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19 // Nature. 2021. Vol. 594, N 7862. P. 259–264. doi: 10.1038/s41586-021-03553-9 |
| [9] |
Soriano JB, Murthy S, Marshall JC, et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–e107. doi: 10.1016/S1473-3099(21)00703-9 |
| [10] |
Soriano J.B., Murthy S., Marshall J.C., et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus // Lancet Infect Dis. 2022. Vol. 22, N 4. P. e102–e107. doi: 10.1016/S1473-3099(21)00703-9 |
| [11] |
Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210–216. doi: 10.1038/s41590-021-01113-x |
| [12] |
Phetsouphanh C., Darley D.R., Wilson D.B., et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection // Nat Immunol. 2022. Vol. 23, N 2. P. 210–216. doi: 10.1038/s41590-021-01113-x |
| [13] |
Chun HJ, Coutavas E, Pine AB, et al. Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection. JCI Insight. 2021;6(14):e148476. doi: 10.1172/jci.insight.148476 |
| [14] |
Chun H.J., Coutavas E., Pine A.B., et al. Immunofibrotic drivers of impaired lung function in postacute sequelae of SARS-CoV-2 infection // JCI Insight. 2021. Vol. 6, N 14. P. e148476. doi: 10.1172/jci.insight.148476 |
| [15] |
Chioh FW, Fong SW, Young BE, et al. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation. Elife. 2021;10:e64909. doi: 10.7554/eLife.64909 |
| [16] |
Chioh F.W., Fong S.W., Young B.E., et al. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation // Elife. 2021. Vol. 10. P. e64909. doi: 10.7554/eLife.64909 |
| [17] |
Proal AD, VanElzakker MB. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front Microbiol. 2021;12:698169. doi: 10.3389/fmicb.2021.698169 |
| [18] |
Proal A.D., VanElzakker M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms // Front Microbiol. 2021. Vol. 12. P. 698169. doi: 10.3389/fmicb.2021.698169 |
| [19] |
Leviner S. Recognizing the clinical sequelae of COVID-19 in adults: COVID-19 long-haulers. J Nurse Pract. 2021;17(8):946–949. doi: 10.1016/j.nurpra.2021.05.003 |
| [20] |
Leviner S. Recognizing the clinical sequelae of COVID-19 in adults: COVID-19 long-haulers // J Nurse Pract. 2021. Vol. 17, N 8. P. 946–949. doi: 10.1016/j.nurpra.2021.05.003 |
| [21] |
García-Abellán J, Padilla S, Fernández-González M, et al. Antibody response to SARS-CoV-2 is associated with long-term clinical outcome in patients with COVID-19: a longitudinal study. J Clin Immunol. 2021;41(7):1490–1501. doi: 10.1007/s10875-021-01083-7 |
| [22] |
García-Abellán J., Padilla S., Fernández-González M., et al. Antibody response to SARS-CoV-2 is associated with long-term clinical outcome in patients with COVID-19: a longitudinal study // J Clin Immunol. 2021. Vol. 41, N 7. P. 1490–1501. doi: 10.1007/s10875-021-01083-7 |
| [23] |
Augustin M, Schommers P, Stecher M, et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg Health Eur. 2021;6:100122. doi: 10.1016/j.lanepe.2021.100122 |
| [24] |
Augustin M., Schommers P., Stecher M., et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study // Lancet Reg Health Eur. 2021. Vol. 6. P. 100122. doi: 10.1016/j.lanepe.2021.100122 |
| [25] |
Blomberg B, Mohn KG, Brokstad KA, et al. Long COVID in a prospective cohort of home-isolated patients. Nat Med. 2021;27(9):1607–1613. doi: 10.1038/s41591-021-01433-3 |
| [26] |
Blomberg B., Mohn K.G., Brokstad K.A., et al. Long COVID in a prospective cohort of home-isolated patients // Nat Med. 2021. Vol. 27, N 9. P. 1607–1613. doi: 10.1038/s41591-021-01433-3 |
| [27] |
Blomberg B, Cox RJ, Langeland N. Long COVID: a growing problem in need of intervention. Cell Rep Med. 2022;3(3):100552. doi: 10.1016/j.xcrm.2022.100552 |
| [28] |
Blomberg B., Cox R.J., Langeland N. Long COVID: a growing problem in need of intervention // Cell Rep Med. 2022. Vol. 3, N 3. P. 100552. doi: 10.1016/j.xcrm.2022.100552 |
| [29] |
Pisareva E, Badiou S, Mihalovičová L, et al. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients. J Med Virol. 2023;95(1):e28209. doi: 10.1002/jmv.28209 |
| [30] |
Pisareva E., Badiou S., Mihalovičová L., et al. Persistence of neutrophil extracellular traps and anticardiolipin auto-antibodies in post-acute phase COVID-19 patients // J Med Virol. 2023. Vol. 95, N 1. P. e28209. doi: 10.1002/jmv.28209 |
| [31] |
Peluso MJ, Lu S, Tang AF, et al. Markers of immune activation and inflammation in individuals with postacute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 infection. J Infect Dis. 2021;224(11):1839–1848. doi: 10.1093/infdis/jiab490 |
| [32] |
Peluso M.J., Lu S., Tang A.F., et al. Markers of immune activation and inflammation in individuals with postacute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 infection // J Infect Dis. 2021. Vol. 224, N 11. P. 1839–1848. doi: 10.1093/infdis/jiab490 |
| [33] |
Kappelmann N, Dantzer R, Khandaker GM. Interleukin-6 as potential mediator of long-term neuropsychiatric symptoms of COVID-19. Psychoneuroendocrinology. 2021;131:105295. doi: 10.1016/j.psyneuen.2021.105295 |
| [34] |
Kappelmann N., Dantzer R., Khandaker G.M. Interleukin-6 as potential mediator of long-term neuropsychiatric symptoms of COVID-19 // Psychoneuroendocrinology. 2021. Vol. 131. P. 105295. doi: 10.1016/j.psyneuen.2021.105295 |
| [35] |
Ghazavi A, Ganji A, Keshavarzian N, et al. Cytokine profile and disease severity in patients with COVID-19. Cytokine. 2021;137:155323. doi: 10.1016/j.cyto.2020.155323 |
| [36] |
Ghazavi A., Ganji A., Keshavarzian N., et al. Cytokine profile and disease severity in patients with COVID-19 // Cytokine. 2021. Vol. 137. P. 155323. doi: 10.1016/j.cyto.2020.155323 |
| [37] |
Sadeghi A, Tahmasebi S, Mahmood A, et al. Th17 and Treg cells function in SARS-CoV2 patients compared with healthy controls. J Cell Physiol. 2021;236(4):2829–2839. doi: 10.1002/jcp.30047 |
| [38] |
Sadeghi A., Tahmasebi S., Mahmood A., et al. Th17 and Treg cells function in SARS-CoV2 patients compared with healthy controls // J Cell Physiol. 2021. Vol. 236, N 4. P. 2829–2839. doi: 10.1002/jcp.30047 |
| [39] |
Su Y, Yuan D, Chen DG, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881–895.e20. doi: 10.1016/j.cell.2022.01.014 |
| [40] |
Su Y., Yuan D., Chen D.G., et al. Multiple early factors anticipate post-acute COVID-19 sequelae // Cell. 2022. Vol. 185, N 5. P. 881–895.e20. doi: 10.1016/j.cell.2022.01.014 |
| [41] |
Avolio E, Carrabba M, Milligan R, et al. The SARS-CoV-2 spike protein disrupts human cardiac pericytes function through CD147 receptor-mediated signalling: a potential non-infective mechanism of COVID-19 microvascular disease. Clin Sci (Lond). 2021;135(24): 2667–2689. doi: 10.1042/CS20210735 |
| [42] |
Avolio E., Carrabba M., Milligan R., et al. The SARS-CoV-2 spike protein disrupts human cardiac pericytes function through CD147 receptor-mediated signalling: a potential non-infective mechanism of COVID-19 microvascular disease // Clin Sci (Lond). 2021. Vol. 135, N 24. P. 2667–2689. doi: 10.1042/CS20210735 |
| [43] |
Lei Y, Zhang J, Schiavon CR, et al. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE2. Circ Res. 2021;128(9):1323–1326. doi: 10.1161/CIRCRESAHA.121.318902 |
| [44] |
Lei Y., Zhang J., Schiavon C.R., et al. SARS-CoV-2 spike protein impairs endothelial function via downregulation of ACE2. Circ Res. 2021. Vol. 128, N 9. P. 1323–1326. doi: 10.1161/CIRCRESAHA.121.318902 |
| [45] |
DeOre BJ, Tran KA, Andrews AM, et al. SARS-CoV-2 spike protein disrupts blood–brain barrier integrity via RhoA activation. J Neuroimmune Pharmacol. 2021;16(4):722–728. doi: 10.1007/s11481-021-10029-0 |
| [46] |
DeOre B.J., Tran K.A., Andrews A.M., et al. SARS-CoV-2 spike protein disrupts blood–brain barrier integrity via RhoA activation // J Neuroimmune Pharmacol. 2021. Vol. 16, N 4. P. 722–728. doi: 10.1007/s11481-021-10029-0 |
| [47] |
Patterson BK, Guevara-Coto J, Yogendra R, et al. Immune-based prediction of COVID-19 severity and chronicity decoded using machine learning. Front Immunol. 2021;12:700782. doi: 10.3389/fimmu.2021.700782 |
| [48] |
Patterson B.K., Guevara-Coto J., Yogendra R., et al. Immune-based prediction of COVID-19 severity and chronicity decoded using machine learning // Front Immunol. 2021. Vol. 12. P. 700782. doi: 10.3389/fimmu.2021.700782 |
| [49] |
Van Cleemput J, van Snippenberg W, Lambrechts L, et al. Organ-specific genome diversity of replication-competent SARS-CoV-2. Nat Commun. 2021;12(1):6612. doi: 10.1038/s41467-021-26884-7 |
| [50] |
Van Cleemput J., van Snippenberg W., Lambrechts L., et al. Organ-specific genome diversity of replication-competent SARS-CoV-2 // Nat Commun. 2021. Vol. 12, N 1. P. 6612. doi: 10.1038/s41467-021-26884-7 |
| [51] |
Stein SR, Ramelli SC, Grazioli A, et al. SARS-CoV-2 infection and persistence throughout the human body and brain at autopsy. Nature. 2022;612(7941):758–763. doi: 10.1038/s41586-022-05542-y |
| [52] |
Stein S.R., Ramelli S.C., Grazioli A., et al. SARS-CoV-2 infection and persistence throughout the human body and brain at autopsy // Nature. 2022. Vol. 612, N 7941. P. 758–763. doi: 10.1038/s41586-022-05542-y |
| [53] |
Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591(7851):639–644. doi: 10.1038/s41586-021-03207-w |
| [54] |
Gaebler C., Wang Z., Lorenzi J.C.C., et al. Evolution of antibody immunity to SARS-CoV-2 // Nature. 2021. Vol. 591, N 7851. P. 639–644. doi: 10.1038/s41586-021-03207-w |
| [55] |
Liotti FM, Menchinelli G, Marchetti S, et al. Assessment of SARS-CoV-2 RNA test results among patients who recovered from COVID-19 with prior negative results. JAMA Intern Med. 2021;181(5):702–704. doi: 10.1001/jamainternmed.2020.7570 |
| [56] |
Liotti F.M., Menchinelli G., Marchetti S., et al. Assessment of SARS-CoV-2 RNA test results among patients who recovered from COVID-19 with prior negative results // JAMA Intern Med. 2021. Vol. 181, N 5. P. 702–704. doi: 10.1001/jamainternmed.2020.7570 |
| [57] |
Vibholm LK, Nielsen SSF, Pahus MH, et al. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses. EBioMedicine. 2021;64:103230. doi: 10.1016/j.ebiom.2021.103230 |
| [58] |
Vibholm L.K., Nielsen S.S.F., Pahus M.H., et al. SARS-CoV-2 persistence is associated with antigen-specific CD8 T-cell responses // EBioMedicine. 2021. Vol. 64. P. 103230. doi: 10.1016/j.ebiom.2021.103230 |
| [59] |
Tejerina F, Catalan P, Rodriguez-Grande C, et al. Post-COVID-19 syndrome. SARS-CoV-2 RNA detection in plasma, stool, and urine in patients with persistent symptoms after COVID-19. BMC Infect Dis. 2022;22(1):211. doi: 10.1186/s12879-022-07153-4 |
| [60] |
Tejerina F., Catalan P., Rodriguez-Grande C., et al. Post-COVID-19 syndrome. SARS-CoV-2 RNA detection in plasma, stool, and urine in patients with persistent symptoms after COVID-19. BMC Infect Dis. 2022. Vol. 22, N 1. P. 211. doi: 10.1186/s12879-022-07153-4 |
| [61] |
Goh D, Chun Tatt Lim JCT, Bilbao Fernaíndez SB, et al. Persistence of residual SARS-CoV-2 viral antigen and RNA in tissues of patients with long COVID-19. Front Immunol. 2022;13:1036894. doi: 10.3389/fimmu.2022.939989 |
| [62] |
Goh D., Chun Tatt Lim J.C.T., Bilbao Fernaíndez S.B., et al. Persistence of residual SARS-CoV-2 viral antigen and RNA in tissues of patients with long COVID-19 // Front Immunol. 2022. Vol. 13. P. 1036894. doi: 10.3389/fimmu.2022.939989 |
| [63] |
Cheung CCL, Goh D, Lim X, et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut. 2022;71(1):226–229. doi: 10.1136/gutjnl-2021-324280 |
| [64] |
Cheung C.C.L., Goh D., Lim X., et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19 // Gut. 2022. Vol. 71, N 1. P. 226–229. doi: 10.1136/gutjnl-2021-324280 |
| [65] |
Swank Z, Senussi Y, Manickas-Hill Z, et al. Persistent circulating SARS-CoV-2 spike is associated with post-acute COVID-19 sequelae. Clin Infect Dis. 2023;76(3):e487–e490. doi: 10.1093/cid/ciac722 |
| [66] |
Swank Z., Senussi Y., Manickas-Hill Z., et al. Persistent circulating SARS-CoV-2 spike is associated with post-acute COVID-19 sequelae // Clin Infect Dis. 2023. Vol. 76, N 3. P. e487–e490. doi: 10.1093/cid/ciac722 |
| [67] |
Natarajan A, Zlitni S, Brooks EF, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (N Y). 2022;3(6):371–387.e9. doi: 10.1016/j.medj.2022.04.001 |
| [68] |
Natarajan A., Zlitni S., Brooks E.F., et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection // Med (N Y). 2022. Vol. 3, N 6. P. 371–387.e9. doi: 10.1016/j.medj.2022.04.001 |
| [69] |
De Melo GD, Lazarini F, Levallois S, et al. COVID-19-associated olfactory dysfunction reveals SARS-CoV-2 neuroinvasion and persistence in the olfactory system. bioRxiv. 2020 (in press). doi: 10.1101/2020.11.18.388819 |
| [70] |
De Melo G.D., Lazarini F., Levallois S., et al. COVID-19-associated olfactory dysfunction reveals SARS-CoV-2 neuroinvasion and persistence in the olfactory system // bioRxiv. 2020 (in press). doi: 10.1101/2020.11.18.388819 |
| [71] |
Peluso MJ, Deitchman AN, Torres L, et al. Long-term SARS- CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms. Cell Rep. 2021;36(6):109518. doi: 10.1016/j.celrep.2021.109518 |
| [72] |
Peluso M.J., Deitchman A.N., Torres L., et al. Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms // Cell Rep. 2021. Vol. 36, N 6. P. 109518. doi: 10.1016/j.celrep.2021.109518 |
| [73] |
Cheon IS, Li C, Son YM, et al. Immune signatures underlying post-acute COVID-19 lung sequelae. Sci Immunol. 2021;6(65): eabk1741. doi: 10.1126/sciimmunol.abk1741 |
| [74] |
Cheon I.S., Li C., Son Y.M., et al. Immune signatures underlying post-acute COVID-19 lung sequelae // Sci Immunol. 2021. Vol. 6, N 65. P. eabk1741. doi: 10.1126/sciimmunol.abk1741 |
| [75] |
Kemp SA, Collier DA, Datir RP, et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature. 2021;592(7853): 277–282. doi: 10.1038/s41586-021-03291-y |
| [76] |
Kemp S.A., Collier D.A., Datir R.P., et al. SARS-CoV-2 evolution during treatment of chronic infection // Nature. 2021. Vol. 592, N 7853. P. 277–282. doi: 10.1038/s41586-021-03291-y |
| [77] |
Choi B, Choudhary MC, Regan J, et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N Engl J Med. 2020;383(23):2291–2293. doi: 10.1056/NEJMc2031364 |
| [78] |
Choi B., Choudhary M.C., Regan J., et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host // N Engl J Med. 2020. Vol. 383, N 23. P. 2291–2293. doi: 10.1056/NEJMc2031364 |
| [79] |
Clark SA, Clark LE, Pan J, et al. SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms. Cell. 2021;184(10):2605–2617.e18. doi: 10.1016/j.cell.2021.03.027 |
| [80] |
Clark S.A., Clark L.E., Pan J., et al. SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms // Cell. 2021. Vol. 184, N 10. P. 2605–2617.e18. doi: 10.1016/j.cell.2021.03.027 |
| [81] |
McCallum M, Bassi J, De Marco A, et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. bioRxiv. 2021 (in press). doi: 10.1101/2021.03.31.437925 |
| [82] |
McCallum M., Bassi J., De Marco A., et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429 // bioRxiv. 2021 (in press). doi: 10.1101/2021.03.31.437925 |
| [83] |
Motozono C, Toyoda M, Zahradnik J, et al. An emerging SARS-CoV-2 mutant evading cellular immunity and increasing viral infectivity. bioRxiv. 2021 (in press). doi: 10.1101/2021.04.02.438288v1 |
| [84] |
Motozono C., Toyoda M., Zahradnik J., et al. An emerging SARS-CoV-2 mutant evading cellular immunity and increasing viral infectivity // bioRxiv. 2021 (in press). doi: 10.1101/2021.04.02.438288v1 |
| [85] |
Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med. 2021;27(5):917–924. doi: 10.1038/s41591-021-01318-5 |
| [86] |
Planas D., Bruel T., Grzelak L., et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies // Nat Med. 2021. Vol. 27, N 5. P. 917–924. doi: 10.1038/s41591-021-01318-5 |
| [87] |
Kumata R, Ito J, Takahashi K, et al. A tissue level atlas of the healthy human virome. BMC Biol. 2020;18(1):55. doi: 10.1186/s12915-020-00785-5 |
| [88] |
Kumata R., Ito J., Takahashi K., et al. A tissue level atlas of the healthy human virome // BMC Biol. 2020. Vol. 18, N 1. P. 55. doi: 10.1186/s12915-020-00785-5 |
| [89] |
Peluso MJ, Deveau TM, Munter SE, et al. Evidence of recent Epstein-Barr virus reactivation in individuals experiencing long COVID. MedRxiv. 2022 (in press). doi: 10.1101/2022.06.21.22276660 |
| [90] |
Peluso M.J., Deveau T.M., Munter S.E., et al. Evidence of recent Epstein-Barr virus reactivation in individuals experiencing Long COVID // medRxiv. 2022 (in press). doi: 10.1101/2022.06.21.22276660 |
| [91] |
Acharya D, Liu GQ, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol. 2020;20(7):397–398. doi: 10.1038/s41577-020-0346-x |
| [92] |
Acharya D., Liu G.Q., Gack M.U. Dysregulation of type I interferon responses in COVID-19 // Nat Rev Immunol. 2020. Vol. 20, N 7. P. 397–398. doi: 10.1038/s41577-020-0346-x |
| [93] |
Chen T, Song J, Liu H, et al. Positive epstein-barr virus detection in corona virus disease 2019 (COVID-19) patients. Sci Rep. 2021;11(1):10902. doi: 10.1038/s41598-021-90351-y |
| [94] |
Chen T., Song J., Liu H., et al. Positive epstein-barr virus detection in corona virus disease 2019 (COVID-19) patients // Sci Rep. 2021. Vol. 11, N 1. P. 10902. doi: 10.1038/s41598-021-90351-y |
| [95] |
García-Martínez FJ, Moreno-Artero E, Jahnke S. SARS-CoV-2 and EBV coinfection. Med Clin (Engl Ed). 2020;155(7):319–320. doi: 10.1016/j.medcle.2020.06.010 |
| [96] |
García-Martínez F.J., Moreno-Artero E., Jahnke S. SARS-CoV-2 and EBV coinfection // Med Clin (Engl Ed). 2020. Vol. 155, N 7. P. 319–320. doi: 10.1016/j.medcle.2020.06.010 |
| [97] |
Xu R, Zhou Y, Cai L, et al. Co-reactivation of the human herpesvirus alpha subfamily (herpes simplex virus-1 and varicella zoster virus) in a critically ill patient with COVID-19. Br J Dermatol. 2020;183(6):1145–1147. doi: 10.1111/bjd.19484 |
| [98] |
Xu R., Zhou Y., Cai L., et al. Co-reactivation of the human herpesvirus alpha subfamily (herpes simplex virus-1 and varicella zoster virus) in a critically ill patient with COVID-19 // Br J Dermatol. 2020. Vol. 183, N 6. P. 1145–1147. doi: 10.1111/bjd.19484 |
| [99] |
Mahroum N, Elsalti A, Alwani A, et al. The mosaic of autoimmunity — finally discussing in person. The 13th international congress on autoimmunity 2022 (AUTO13) Athens. Autoimmun Rev. 2022;21(10):103166. doi: 10.1016/j.autrev.2022.103166 |
| [100] |
Mahroum N., Elsalti A., Alwani A., et al. The mosaic of autoimmunity — finally discussing in person. The 13th international congress on autoimmunity 2022 (AUTO13) Athens // Autoimmun Rev. 2022. Vol. 21, N 10. P. 103166. doi: 10.1016/j.autrev.2022.103166 |
| [101] |
Mobasheri L, Nasirpour MH, Masoumi E, et al. SARS-CoV-2 triggering autoimmune diseases. Cytokine. 2022;154:155873. doi: 10.1016/j.cyto.2022.155873 |
| [102] |
Mobasheri L., Nasirpour M.H., Masoumi E., et al. SARS-CoV-2 triggering autoimmune diseases // Cytokine. 2022. Vol. 154. P. 155873. doi: 10.1016/j.cyto.2022.155873 |
| [103] |
Cabral-Marques O. Halpert G, Schimke LF, et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun. 2022;13(1):1220. doi: 10.1038/s41467-022-28905-5 |
| [104] |
Cabral-Marques O., Halpert G., Schimke L.F., et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity // Nat Commun. 2022. Vol. 13, N 1. P. 1220. doi: 10.1038/s41467-022-28905-5 |
| [105] |
Wang EY, Mao T, Klein J, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283–288. doi: 10.1038/s41586-021-03631-y |
| [106] |
Wang E.Y., Mao T., Klein J., et al. Diverse functional autoantibodies in patients with COVID-19 // Nature. 2021. Vol. 595, N 7866. P. 283–288. doi: 10.1038/s41586-021-03631-y |
| [107] |
Bastard P, Gervais A, Le Voyer T, et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci Immunol. 2021;6(62):eabl4340. doi: 10.1126/sciimmunol.abl4340 |
| [108] |
Bastard P., Gervais A., Le Voyer T., et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths // Sci Immunol. 2021. Vol. 6, N 62. P. eabl4340. doi: 10.1126/sciimmunol.abl4340 |
| [109] |
Son K, Jamil R, Chowdhury A, et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. Eur Respir J. 2023;61(1):2200970. doi: 10.1183/13993003.00970-2022 |
| [110] |
Son K., Jamil R., Chowdhury A., et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms // Eur Respir J. 2023. Vol. 61, N 1. P. 2200970. doi: 10.1183/13993003.00970-2022 |
| [111] |
Arthur JM, Forrest JC, Boehme KW, et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One. 2021;16(9):e0257016. doi: 10.1371/journal.pone.0257016 |
| [112] |
Arthur J.M., Forrest J.C., Boehme K.W., et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection // PLoS One. 2021. Vol. 16, N 9. P. e0257016. doi: 10.1371/journal.pone.0257016 |
| [113] |
Ueland T, Holter JC, Holten AR, et al. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure: MMP-9 and respiratory failure in COVID-19. J Infect. 2020;81(3): e41–e43. doi: 10.1016/j.jinf.2020.06.061 |
| [114] |
Ueland T., Holter J.C., Holten A.R., et al. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure: MMP-9 and respiratory failure in COVID-19 // J Infect. 2020. Vol. 81, N 3. P. e41–e43. doi: 10.1016/j.jinf.2020.06.061 |
| [115] |
Wallukat G, Hohberger B, Wenzel K, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistentlLong-COVID-19 symptoms. J Transl Autoimmun. 2021;4:100100. doi: 10.1016/j.jtauto.2021.100100 |
| [116] |
Wallukat G., Hohberger B., Wenzel K., et al. Functional autoantibodies against G-protein coupled receptors in patients with persistentlLong-COVID-19 symptoms // J Transl Autoimmun. 2021. Vol. 4. P. 100100. doi: 10.1016/j.jtauto.2021.100100 |
| [117] |
Franke C, Ferse C, Kreye J, et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun. 2021;93:415–419. doi: 10.1016/j.bbi.2020.12.022 |
| [118] |
Franke C., Ferse C., Kreye J., et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms // Brain Behav Immun. 2021. Vol. 93. P. 415–419. doi: 10.1016/j.bbi.2020.12.022 |
| [119] |
Sukocheva OA, Maksoud R, Beeraka NM, et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res. 2022;40:179–196. doi: 10.1016/j.jare.2021.11.013 |
| [120] |
Sukocheva O.A., Maksoud R., Beeraka N.M., et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome // J Adv Res. 2022. Vol. 40. P. 179–196. doi: 10.1016/j.jare.2021.11.013 |
| [121] |
Kreye J, Reincke SM, Kornau HC, et al. A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model. Cell. 2020;183(4):1058–1069.e19. doi: 10.1016/j.cell.2020.09.049 |
| [122] |
Kreye J., Reincke S.M., Kornau H.C., et al. A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model // Cell. Vol. 183, N 4. P. 1058–1069.e19. doi: 10.1016/j.cell.2020.09.049 |
| [123] |
Marino Gammazza A, Légaré S, Lo Bosco G, et al. Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders? Lancet Microbe. 2021;2(3):e94. doi: 10.1016/S2666-5247(21)00033-1 |
| [124] |
Marino Gammazza A., Légaré S., Lo Bosco G., et al. Molecular mimicry in the post-COVID-19 signs and symptoms of neurovegetative disorders? // Lancet Microbe. 2021. Vol. 2, N 3. P. e94. doi: 10.1016/S2666-5247(21)00033-1 |
| [125] |
Kovarik JJ, Bileck A, Hagn G, et al. A multi-omics based anti-inflammatory immune signature characterizes long COVID-19 syndrome. iScience. 2023;26(1):105717. doi: 10.1016/j.isci.2022.105717 |
| [126] |
Kovarik J.J., Bileck A., Hagn G., et al. A multi-omics based anti-inflammatory immune signature characterizes long COVID-19 syndrome // iScience. 2023. Vol. 26, N 1. P. 105717. doi: 10.1016/j.isci.2022.105717 |
| [127] |
Brodin P, Casari G, Townsend L, et al. COVID Human Genetic Effort Studying severe long COVID to understand post-infectious disorders beyond COVID-19. Nat Med. 2022;28(5):879–882. doi: 10.1038/s41591-022-01766-7 |
| [128] |
Brodin P., Casari G., Townsend L., et al. COVID Human Genetic Effort Studying severe long COVID to understand post-infectious disorders beyond COVID-19 // Nat Med. 2022. Vol. 28, N 5. P. 879–882. doi: 10.1038/s41591-022-01766-7 |
| [129] |
Klein J, Wood J, Jaycox J, et al. Distinguishing features of Long COVID identified through immune profiling. medRxiv. 2022 (in press). doi: 10.1101/2022.08.09.22278592 |
| [130] |
Klein J., Wood J., Jaycox J., et al. Distinguishing features of Long COVID identified through immune profiling // medRxiv. 2022 (in press). doi: 10.1101/2022.08.09.22278592 |
| [131] |
Arostegui D, Castro K, Schwarz S, et al. Persistent SARS-CoV-2 nucleocapsid protein presence in the intestinal epithelium of a pediatric patient 3 months after acute infection. JPGN Reports. 2022;3(1):e152. doi: 10.1097/PG9.0000000000000152 |
| [132] |
Arostegui D., Castro K., Schwarz S., et al. Persistent SARS-CoV-2 nucleocapsid protein presence in the intestinal epithelium of a pediatric patient 3 months after acute infection // JPGN Reports. 2022. Vol. 3, N 1. P. e152. doi: 10.1097/PG9.0000000000000152 |
| [133] |
Glynne P, Tahmasebi N, Gant V, Gupta R. Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines. J Investig Med. 2022;70(1):61–67. doi: 10.1136/jim-2021-002051 |
| [134] |
Glynne P., Tahmasebi N., Gant V., Gupta R. Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines // J Investig Med. 2022. Vol. 70, N 1. P. 61–67. doi: 10.1136/jim-2021-002051 |
| [135] |
Mehandru S, Merad M. Pathological sequelae of long-haul COVID. Nat Immunol. 2022;23(2):194–202. doi: 10.1038/s41590-021-01104-y |
| [136] |
Mehandru S., Merad M. Pathological sequelae of long-haul COVID // Nat Immunol. 2022. Vol. 23, N 2. P. 194–202. doi: 10.1038/s41590-021-01104-y |
Sсherbak S.G., Sarana A.M., Vologzhanin D.A., Kamilova T.A., Golota A.S., Makarenko S.V.
/
| 〈 |
|
〉 |