Virtual reality as a technology of multimodal correction of post-stroke motor and cognitive disturbances in conditions of multitasking functioning (literature review)

Elena V. Kostenko , Liudmila V. Petrova , Irena V. Pogonchenkova , Vera D. Kopasheva

Russian Medicine ›› 2022, Vol. 28 ›› Issue (5) : 381 -394.

PDF
Russian Medicine ›› 2022, Vol. 28 ›› Issue (5) : 381 -394. DOI: 10.17816/medjrf112059
Reviews
review-article

Virtual reality as a technology of multimodal correction of post-stroke motor and cognitive disturbances in conditions of multitasking functioning (literature review)

Author information +
History +
PDF

Abstract

The article presents an overview of innovative technologies based on the methods of sensorimotor retraining of patients using virtual reality technology as a promising in the comprehensive rehabilitation of patients who have suffered a cerebral stroke. High level of evidence studies (RCTs, meta-analyses, and systematic reviews) index in the PubMed, Cochrane Library, ClinicalTrials.gov databases are analyzed. Training with multisensory effects on visual, auditory, vestibular, and kinesthetic analyzers in multitasking conditions have beneficial effects on cognitive and motor training, retraining, neuropsychological status of the patien,t and an increase in the level of motivation to achieve success in the rehabilitation. The synergistic nature of the multimodal effects of virtual reality makes it possible to expand the possibilities and increase the effectiveness of medical rehabilitation in patients who have undergone cerebral stroke.

Keywords

stroke / medical rehabilitation / virtual reality / biofeedback / motor disfunction / cognitive disturbances

Cite this article

Download citation ▾
Elena V. Kostenko, Liudmila V. Petrova, Irena V. Pogonchenkova, Vera D. Kopasheva. Virtual reality as a technology of multimodal correction of post-stroke motor and cognitive disturbances in conditions of multitasking functioning (literature review). Russian Medicine, 2022, 28(5): 381-394 DOI:10.17816/medjrf112059

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Piradov MA, Tanashjan MM, Maksimova MJu. Insul’t: sovremennye tehnologii diagnostiki i lechenija. 3-e izd. Moscow: MEDpress-inform; 2018. 360 p. (In Russ).

[2]

Пирадов М.А., Танашян М.М., Максимова М.Ю. Инсульт: современные технологии диагностики и лечения. 3-е изд. Москва : МЕДпресс-информ, 2018. 360 с.

[3]

Abubakar SA, Isezuo SA. Health related quality of life of stroke survivors: experience of a stroke unit. Int J Biomed Sci. 2012;8(3):183–187.

[4]

Abubakar S.A., Isezuo S.A. Health related quality of life of stroke survivors: experience of a stroke unit // Int J Biomed Sci. 2012. Vol. 8, N 3. P. 183–187.

[5]

Brainin M, Norrving B, Sunnerhagen KS, et al. Poststroke chronic disease management: towards improved identification and interventions for post-stroke spasticity-related complications. Int J Stroke. 2011;6(1):42–46. doi: 10.1111/j.1747-4949.2010.00539.x

[6]

Brainin M., Norrving B., Sunnerhagen K.S., et al. Poststroke chronic disease management: towards improved identification and interventions for post-stroke spasticity-related complications // Int J Stroke. 2011. Vol. 6, N 1. P. 42–46. doi: 10.1111/j.1747-4949.2010.00539.x

[7]

Mellon L, Brewer L, Hall P, et al. Cognitive impairment six months after ischaemic stroke: a profile from the ASPIRE-S study. BMC Neurol. 2015;15:31. doi: 10.1186/s12883-015-0288-2

[8]

Mellon L., Brewer L., Hall P., et al. Cognitive impairment six months after ischaemic stroke: a profile from the ASPIRE-S study // BMC Neurol. 2015. Vol. 15. P. 31. doi: 10.1186/s12883-015-0288-2

[9]

Fakhretdinov VV, Brynza NS, Kurmangulov AA. Modern approaches to rehabilitation of patients after stroke. Vestnik of the Smolensk State Medical Academy. 2019;18(2):182–189 (In Russ).

[10]

Фахретдинов В.В., Брынза Н.С., Курмангулов А.А. Современные подходы к реабилитации пациентов, перенесших инсульт // Вестник Смоленской государственной медицинской академии. 2019. Т 18, № 2. С. 182–189.

[11]

Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–754. doi: 10. 10.1016/S1474-4422(09)70150-4

[12]

Langhorne P., Coupar F., Pollock A. Motor recovery after stroke: a systematic review // Lancet Neurol. 2009. Vol. 8, N 8. P. 741–754. doi: 10.10.1016/S1474-4422(09)70150-4

[13]

Winstein CJ, Wolf SL, Dromerick AW, et al. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. JAMA. 2016;315(6):571–581. doi: 10.1001/jama.2016.0276

[14]

Winstein C.J., Wolf S.L., Dromerick A.W., et al. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial // JAMA. 2016. Vol. 315, N 6. P. 571–581. doi: 10.1001/jama.2016.0276

[15]

Kwakkel G, Winters C, Van Wegen EE, et al. Effects of unilateral upper-limb training in two distinct prognostic groups early after stroke: the EXPLICIT-stroke randomized clinical trial. Neurorehabil Neural Repair. 2016;30(9):804–816. doi: 10.1177/ 1545968315624784

[16]

Kwakkel G., Winters C., Van Wegen E.E., et al. Effects of unilateral upper-limb training in two distinct prognostic groups early after stroke: the EXPLICIT-stroke randomized clinical trial // Neurorehabil Neural Repair. 2016. Vol. 30, N 9. P. 804–816. doi: 10.1186/s12883-015-0288-2

[17]

Yelnik AP, Quintaine V, Andriantsifanetra C, et al. AMOBES (active mobility very early after stroke): a randomized controlled trial. Stroke. 2017;48(2):400–405. doi: 10.1161/STROKEAHA.116.014803

[18]

Yelnik A.P., Quintaine V., Andriantsifanetra C., et al. AMOBES (active mobility very early after stroke) a randomized controlled trial // Stroke. 2017. Vol. 8, N 2. P. 400–405. doi: 10.1161/STROKEAHA.116.014803

[19]

Pomeroy VM, Hunter SM, Johansen-Berg H, et al. Functional strength training versus movement performance therapy for upper-limb motor recovery early after stroke: a RCT. Southampton (UK): NIHR Journals Library; 2018. doi: 10.3310/eme05030

[20]

Pomeroy V.M., Hunter S.M., Johansen-Berg H., et al. Functional strength training versus movement performance therapy for upper-limb motor recovery early after stroke: a RCT. Southampton (UK) : NIHR Journals Library, 2018. doi: 10.3310/eme05030

[21]

Muresanu DF, Heiss W-D, Hoemberg V, et al. Cerebrolysin and recovery after stroke (CARS): a randomized, placebo-controlled, double-blind, multicenter trial. Stroke. 2016;47(1):151–159. doi: 10.1161/STROKEAHA.115.009416

[22]

Muresanu D.F., Heiss W.D., Hoemberg V., et al. Cerebrolysin and recovery after stroke (CARS): a randomized, placebo-controlled, double-blind, multicenter trial // Stroke. 2016. Vol. 47, N 1. P. 151–159. doi: 10.1161/STROKEAHA.115.009416

[23]

Cramer SC, Enney LA, Russell CK, et al. Proof-of-concept randomized trial of the monoclonal antibody GSK249320 versus placebo in stroke patients. Stroke. 2017;48(3):692–698. doi: 10.1161/STROKEAHA.116.014517

[24]

Cramer S.C., Enney L.A., Russell C.K., et al. Proof-of-concept randomized trial of the monoclonal antibody GSK249320 versus placebo in stroke patients // Stroke. 2017. Vol. 48, N 3. P. 692–698. doi: 10.1161/STROKEAHA.116.014517

[25]

Ford GA, Bhakta BB, Cozens A, et al. Safety and efficacy of co-careldopa as an add-on therapy to occupational and physical therapy in patients after stroke (DARS): a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2019;18(6):530–538. doi: 10.1016/S1474-4422(19)30147-4

[26]

Ford G.A., Bhakta B.B., Cozens A., et al. Safety and efficacy of co-careldopa as an add-on therapy to occupational and physical therapy in patients after stroke (DARS): a randomised, double-blind, placebo-controlled trial // Lancet Neurol. 2019. Vol. 18, N 6. P. 530–538. doi: 10.1016/S1474-4422(19)30147-4

[27]

Bath PM, Scutt P, Love J, et al. Pharyngeal electrical stimulation for treatment of dysphagia in subacute stroke: a randomized controlled trial. Stroke. 2016;47(6):1562–1570. doi: 10.1161/STROKEAHA.115.012455

[28]

Bath P.M., Scutt P., Love J., et al. Pharyngeal electrical stimulation for treatment of dysphagia in subacute stroke: a randomized controlled trial // Stroke. 2016. Vol. 47, N 6. P. 1562–1570. doi: 10.1161/STROKEAHA.115.012455

[29]

Levy RM, Harvey RL, Kissela BM, et al. Epidural electrical stimulation for stroke rehabilitation: results of the prospective, multicenter, randomized, single-blinded everest trial. Neurorehabil Neural Repair. 2016;30(2):107–119. doi: 10.1177/1545968315575613

[30]

Levy R.M., Harvey R.L., Kissela B.M., et al. Epidural electrical stimulation for stroke rehabilitation: results of the prospective, multicenter, randomized, single-blinded everest trial // Neurorehabil Neural Repair. 2016. Vol. 30, N 2. P. 107–119. doi: 10.1177/1545968315575613

[31]

Harvey RL, Edwards D, Dunning K, et al. Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke. Stroke. 2018;49(9):2138–2146. doi: 10.1161/STROKEAHA.117.020607

[32]

Harvey R.L., Edwards D., Dunning K., et al. Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke // Stroke. 2018. Vol. 49, N 9. P. 2138–2146. doi: 10.1161/STROKEAHA.117.020607

[33]

Saposnik G, Cohen LG, Mamdani M, et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15(10):1019–1027. doi: 10.1016/S1474-4422(16)30121-1

[34]

Saposnik G., Cohen L.G., Mamdani M., et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial // Lancet Neurol. 2016. Vol. 15, N 10. P. 1019–1027. doi: 10.1016/S1474-4422(16)30121-1

[35]

Brunner I, Skouen JS, Hofstad H, et al. Virtual reality training for upper-extremity in subacute stroke (VIRTUES): a multicenter RCT. Neurology. 2017;89(24):2413–2421. doi: 10.1212/WNL.0000000000004744

[36]

Brunner I., Skouen J.S., Hofstad H., et al. Virtual reality training for upper-extremity in subacute stroke (VIRTUES): a multicenter RCT // Neurology. 2017. Vol. 89, N 24. P. 2413–2421. doi: 10.1212/WNL.0000000000004744

[37]

Adie K, Schofield C, Berrow M, et al. Does the use of nintendo Wii SportsTM improve arm function? Trial of WiiTM in Stroke: a randomized controlled trial and economics analysis. Clin Rehabil. 2017;31(2):173–185. doi: 10.1177/0269215516637893

[38]

Adie K., Schofield C., Berrow M., et al. Does the use of nintendo Wii SportsTM improve arm function? Trial of WiiTM in Stroke: a randomized controlled trial and economics analysis // Clin Rehabil. 2017. Vol. 31, N 2. P. 173–185. doi: 10.1177/0269215516637893

[39]

Cramer SC, Dodakian L, Le V, et al. Efficacy of home-based telerehabilitation vs in-clinic therapy for adults after stroke: a rando mized clinical trial. JAMA Neurol. 2019;76(9):1079–1087. doi: 10.1001/jamaneurol.2019.1604

[40]

Cramer S.C., Dodakian L., Le V., et al. Efficacy of home-based telerehabilitation vs in-clinic therapy for adults after stroke: a randomized clinical trial // JAMA Neurol. 2019. Vol. 76, N 9. P. 1079–1087. doi: 10.1001/jamaneurol.2019.1604

[41]

Rodgers H, Bosomworth H, Krebs HI, et al. Robot assisted training for the upper-limb after stroke (RATULS): a multicentre randomised controlled trial. The Lancet. 2019;394(10192):51–62. doi: 10.1016/S0140-6736(19)31055-4

[42]

Rodgers H., Bosomworth H., Krebs H.I., et al. Robot assisted training for the upper-limb after stroke (RATULS): a multicentre randomised controlled trial // The Lancet. 2019. Vol. 394, N 10192. P. 51–62. doi: 10.1016/S0140-6736(19)31055-4

[43]

Silver B. Virtual reality versus reality in post-stroke rehabilitation. Lancet Neurol. 2016;15(10):996–997. doi: 10.1016/S1474-4422(16)30126-0

[44]

Silver B. Virtual reality versus reality in post-stroke rehabilitation // Lancet Neurol. 2016. Vol. 15, N 10. P. 996–997. doi: 10.1016/S1474-4422(16)30126-0

[45]

Schultheis MT, Rizzo AA. The application of virtual reality technology in rehabilitation. Rehabilitation Psychology. 2001;46(3):296. doi: 10.1037/0090-5550.46.3.296

[46]

Schultheis M.T., Rizzo A.A. The application of virtual reality technology in rehabilitation // Rehabilitation Psychology. 2001. Vol. 46, N 3. P. 296. doi: 10.1037/0090-5550.46.3.296

[47]

Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015;95(3):415–425. doi: 10.2522/ptj.20130579

[48]

Levin M.F., Weiss P.L., Keshner E.A. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles // Phys Ther. 2015. Vol. 95, N 3. P. 415–425. doi: 10.2522/ptj.20130579

[49]

Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008;51(1):S225–S239. doi: 10.1044/1092-4388(2008/018)

[50]

Kleim J.A., Jones T.A. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage // J Speech Lang Hear Res. 2008. Vol. 51, N 1. P. S225–S239. doi: 10.1044/1092-4388(2008/018)

[51]

Karpov OE, Daminov VD, Novak EV, et al. Virtual reality tech no logies in medical rehabilitation as an example of modern health informatization. Bulletin of Pirogov National Medical and Surgical Center. 2020;15(1):89–98. (In Russ). doi: 10.25881/BPNMSC.2020.71.14.017

[52]

Карпов О.Э., Даминов В.Д., Новак Э.В., и др. Технологии виртуальной реальности в медицинской реабилитации, как пример современной информатизации здравоохранения // Вестник Национального медико-хирургического Центра им. Н.И. Пирогова. 2020. T. 15, № 1. С. 89–98. doi: 10.25881/BPNMSC.2020.71.14.017

[53]

Lee HS, Lim JH, Jeon BH, Song CS. Non-immersive virtual reality rehabilitation applied to a task-oriented approach for stroke patients: a randomized controlled trial. Restor Neurol Neurosci. 2020;38(2):165–172. doi: 10.3233/RNN-190975

[54]

Lee H.S., Lim J.H., Jeon B.H., Song C.S. Non-immersive virtual reality rehabilitation applied to a task-oriented approach for stroke patients: a randomized controlled trial // Restor Neurol Neurosci. 2020. Vol. 38, N 2. P. 165–172. doi: 10.3233/RNN-190975

[55]

Merians AS, Jack D, Boian R, et al. Virtual reality — augmented rehabilitation for patients following stroke. Phys Ther. 2002;82(9):898–915. doi: 10.1093/ptj/ 82.9.898

[56]

Merians A.S., Jack D., Boian R., et al. Virtual reality — augmented rehabilitation for patients following stroke // Phys Ther. 2002. Vol. 82, N 9. P. 898–915. doi: 10.1093/ptj/82.9.898

[57]

Burke JW, McNeill M, Charles DK, et al. Optimising engagement for stroke rehabilitation using serious games. Vis Comput. 2009;25:1085–1099. doi: 10.1007/s00371-009-0387-4

[58]

Burke J.W., McNeill M., Charles D.K., et al. Optimising engagement for stroke rehabilitation using serious games // Vis Comput. 2009. Vol. 25. P. 1085–1099. doi: 10.1007/s00371-009-0387-4

[59]

Mihelj M, Novak D, Milavec M, et al. Virtual rehabilitation environment using principles of intrinsic motivation and game design. Presence: Teleoperators and Virtual Environments. 2012;21(1):1–15. doi: 10.1162/PRES_a_00078

[60]

Mihelj M., Novak D., Milavec M., et al. Virtual rehabilitation en vironment using principles of intrinsic motivation and game design // Presence: Teleoperators and Virtual Environments. 2012. Vol. 21, N 1. P. 1–15. doi: 10.1162/PRES_a_00078

[61]

Plummer P, Villalobos RM, Vayda MS, et al. Feasibility of dual-task gait training for community-dwelling adults after stroke: a case series. Stroke Res Treat. 2014;2014:538602. doi: 10.1155/2014/538602

[62]

Plummer P., Villalobos R.M., Vayda M.S., et al. Feasibility of dual-task gait training for community-dwelling adults after stroke: a case series // Stroke Res Treat. 2014. Vol. 2014. P. 538602. doi: 10.1155/2014/538602

[63]

An HJ, Kim JI, Kim YR, et al. The effect of various dual task training methods with gait on the balance and gait of patients with chronic stroke. J Phys Ther Sci. 2014;26(8):1287–1291. doi: 10.1589/jpts.26.1287

[64]

An H.J., Kim J.I., Kim Y.R., et al. The effect of various dual task training methods with gait on the balance and gait of patients with chronic stroke // J Phys Ther Sci. 2014. Vol. 26, N 8. P. 1287–1291. doi: 10.1589/jpts.26.1287

[65]

Her JG, Park KD, Yang Y, et al. Effects of balance training with various dual-task conditions on stroke patients. J Phys Ther Sci. 2011;23(5):713–717. doi: 10.1589/jpts.23.713

[66]

Her J.G., Park K.D., Yang Y., et al. Effects of balance training with various dual-task conditions on stroke patients // J Phys Ther Sci. 2011. Vol. 23, N 5. P. 713–717. doi: 10.1589/jpts.23.713

[67]

Fishbein P, Hutzler Y, Ratmansky M, et al. A preliminary study of dual-task training using virtual reality: influence on walking and balance in chronic poststroke survivors. J Stroke Cerebrovasc Dis. 2019;28(11):104343. doi: 10.1016/j.jstrokecerebrovasdis.2019.104343

[68]

Fishbein P., Hutzler Y., Ratmansky M., et al. A preliminary study of dual-task training using virtual reality: influence on walking and balance in chronic poststroke survivors // J Stroke Cerebrovasc Dis. 2019. Vol. 28, N 11. P. 104343. doi: 10.1016/j.jstrokecerebrovasdis.2019.104343

[69]

Petrikov SS, Grechko AV, Shchelkunova IG, et al. New perspectives of motor rehabilitation of patients after focal brain lesions. Burdenko’s Journal of Neurosurgery. 2019;83(6):90–99. (In Russ, In Engl). doi: 10.17116/neiro20198306190

[70]

Петриков С.С., Гречко А.В., Щелкунова И.Г., и др. Новые перспективы двигательной реабилитации пациентов после очагового поражения головного мозга // Журнал «Вопросы нейрохирургии» имени Н.Н. Бурденко. 2019. Т. 83, № 6. С. 90–99. doi: 10.17116/neiro20198306190

[71]

Subramaniam S, Wan-Ying Hui-Chan Ch, Bhatt T, et al. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors. J Neurol Phys Ther. 2014;38(4):216–225. doi: 1097/NPT.0000000000000056

[72]

Subramaniam S., Wan-Ying Hui-Chan Ch., Bhatt T., et al. A cognitive-balance control training paradigm using wii fit to reduce fall risk in chronic stroke survivors // J Neurol Phys Ther. 2014. Vol. 38, N 4. P. 216–225. doi: 1097/NPT.0000000000000056

[73]

Kannan L, Vora J, Bhatt T, Hughes SL. Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: a randomized controlled trial. NeuroRehabilitation. 2019;44(4):493–510. doi: 10.3233/NRE-182683

[74]

Kannan L., Vora J., Bhatt T., Hughes S.L. Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: a randomized controlled trial // NeuroRehabilitation. 2019. Vol. 44, N 4. P. 493–510. doi: 10.3233/NRE-182683

[75]

Hatem SM, Saussez G, Della Faille M, et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front Hum Neurosci. 2016;10:442. doi: 10.3389/fnhum.2016.00442

[76]

Hatem S.M., Saussez G., Della Faille M., et al. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery // Front Hum Neurosci. 2016. Vol. 10. P. 442. doi: 10.3389/fnhum.2016.00442

[77]

Laver KE, Lange B, George S, et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11(11):CD008349. doi: 10.1002/14651858.CD008349.pub4

[78]

Laver K.E., Lange B., George S., et al. Virtual reality for stroke rehabilitation // Cochrane Database Syst Rev. 2017. Vol. 11, N 11. P. CD008349. doi: 10.1002/14651858.CD008349.pub4

[79]

Aminov A, Rogers JM, Middleton S, et al. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes. J Neuroeng Rehabil. 2018;15(1):29. doi: 10.1186/s12984-018-0370-2

[80]

Aminov A., Rogers J.M., Middleton S., et al. What do randomized controlled trials say about virtual rehabilitation in stroke? A systematic literature review and meta-analysis of upper-limb and cognitive outcomes // J Neuroeng Rehabil. 2018. Vol. 15, N 1. P. 29. doi: 10.1186/s12984-018-0370-2

[81]

Aramaki AL, Sampaio RF, Reis ACS, et al. Virtual reality in the rehabilitation of patients with stroke: an integrative review. Arq Neuropsiquiatr. 2019;77(4):268–278. doi: 10.1590/0004-282X20190025

[82]

Aramaki A.L., Sampaio R.F., Reis A.C.S., et al. Virtual reality in the rehabilitation of patients with stroke: an integrative review // Arq Neuropsiquiatr. 2019. Vol. 77, N 4. P. 268–278. doi: 10.1590/0004-282X20190025

[83]

Shin JH, Kim MY, Lee JY, et al. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. J Neuroeng Rehabil. 2016;13:17. doi: 10.1186/s12984-016-0125-x

[84]

Shin J.H., Kim M.Y., Lee J.Y., et al. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial // J Neuroeng Rehabil. 2016. Vol. 13. P. 17. doi: 10.1186/s12984-016-0125-x

[85]

Hee-Tae J, Hwan K, Jugyeong J, et al. Feasibility of using the RAPAEL Smart Glove in upper limb physical therapy for patients after stroke: a randomized controlled trial. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:3856–3859. doi: 10.1109/EMBC.2017.8037698

[86]

Hee-Tae J., Hwan K., Jugyeong J., et al. Feasibility of using the RAPAEL Smart Glove in upper limb physical therapy for patients after stroke: a randomized controlled trial // Annu Int Conf IEEE Eng Med Biol Soc. 2017. Vol. 2017. P. 3856–3859. doi: 10.1186/s12984-016-0125-x

[87]

Choi YH, Paik NJ. Mobile game-based virtual reality program for upper extremity stroke rehabilitation. J Vis Exp. 2018;(133):56241. doi: 10.3791/56241

[88]

Choi Y.H., Paik N.J. Mobile game-based virtual reality program for upper extremity stroke rehabilitation // J Vis Exp. 2018. Vol. 133. P. 56241. doi: 10.3791/56241

[89]

Lee HS, Lim JH, Jeon BH, Song CS. Non-immersive virtual reality rehabilitation applied to a task-oriented approach for stroke patients: a randomized controlled trial. Restor Neurol Neurosci. 2020;38(2):165–172. doi: 10.3233/RNN-190975

[90]

Lee H.S., Lim J.H., Jeon B.H., Song C.S. Non-immersive virtual reality rehabilitation applied to a task-oriented approach for stroke patients: a randomized controlled trial // Restor Neurol Neurosci. 2020. Vol. 38, N 2. P. 165–172. doi: 10.3233/RNN-190975

[91]

Kang MG, Yun SJ, Lee SY, et al. Effects of upper-extremity rehabilitation using smart glove in patients with subacute stroke: results of a prematurely terminated multicenter randomized controlled trial. Front Neurol. 2020;11:580393. doi: 10.3389/fneur.2020.580393

[92]

Kang M.G., Yun S.J., Lee S.Y., et al. Effects of upper-extremity rehabilitation using smart glove in patients with subacute stroke: results of a prematurely terminated multicenter randomized controlled trial // Front Neurol. 2020. Vol. 11. P. 580393. doi: 10.3389/fneur.2020.580393

[93]

Park YS, An CS, Lim CG. Effects of a rehabilitation program using a wearable device on the upper limb function, performance of activities of daily living, and rehabilitation participation in patients with acute stroke. Int J Environ Res Public Health. 2021;18(11):5524. doi: 10.3390/ijerph18115524

[94]

Park Y.S., An C.S., Lim C.G. Effects of a rehabilitation program using a wearable device on the upper limb function, performance of activities of daily living, and rehabilitation participation in patients with acute stroke // Int J Environ Res Public Health. 2021. Vol. 18, N 11. P. 5524. doi: 10.3390/ijerph18115524

[95]

El-Kafy EMA, Alshehri MA, El-Fiky AA, Guermazi MA. The effect of virtual reality-based therapy on improving upper limb functions in individuals with stroke: a randomized control trial. Front Aging Neurosci. 2021;13:731343. doi: 10.3389/fnagi.2021.731343

[96]

El-Kafy E.M.A., Alshehri M.A., El-Fiky A.A., Guermazi M.A. The effect of virtual reality-based therapy on improving upper limb functions in individuals with stroke: a randomized control trial // Front Aging Neurosci. 2021. Vol. 13. P. 731343. doi: 10.3389/fnagi.2021.731343

[97]

Chen J, Or CK, Chen T. Effectiveness of using virtual reality-supported exercise therapy for upper extremity motor rehabilitation in patients with stroke: systematic review and meta-analysis of randomized controlled trials. J Med Internet Res. 2022;24(6):e24111. doi: 10.2196/24111

[98]

Chen J., Or C.K., Chen T. Effectiveness of using virtual reality-supported exercise therapy for upper extremity motor rehabilitation in patients with stroke: systematic review and meta-analysis of randomized controlled trials // J Med Internet Res. 2022. Vol. 24, N 6. P. e24111. doi: 10.2196/24111

[99]

Lansberg MG, Legault C, MacLellan A, et al. Home-based virtual reality therapy for hand recovery after stroke. PM R. 2022;14(3):320–328. doi: 10.1002/pmrj.12598

[100]

Lansberg M.G., Legault C., MacLellan A., et al. Home-based virtual reality therapy for hand recovery after stroke // PM R. 2022. Vol. 14, N 3. P. 320–328. doi: 10.1002/pmrj.12598

[101]

Jonsdottir J, Baglio F, Gindri P, et al. Virtual reality for motor and cognitive rehabilitation from clinic to home: a pilot feasibility and efficacy study for persons with chronic stroke. Front Neurol. 2021;12:601131. doi: 10.3389/fneur.2021.601131

[102]

Jonsdottir J., Baglio F., Gindri P., et al. Virtual reality for motor and cognitive rehabilitation from clinic to home: a pilot feasibility and efficacy study for persons with chronic stroke // Front Neurol. 2021. Vol. 12. P. 601131. doi: 10.3389/fneur.2021.601131

[103]

Domínguez-Téllez P, Moral-Muñoz JA, Salazar A, et al. Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: systematic review and meta-analysis. Games Health J. 2020;9(1):1–10. doi: 10.1089/g4h.2019.0043

[104]

Domínguez-Téllez P., Moral-Muñoz J.A., Salazar A., et al. Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: systematic review and meta-analysis // Games Health J. 2020. Vol. 9, N 1. P. 1–10. doi: 10.1089/g4h.2019.0043

[105]

Zhang B, Li D, Liu Y, et al. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: a systematic review and meta-analysis. J Adv Nurs. 2021;77(8):3255–3273. doi: 10.1111/jan.14800

[106]

Zhang B., Li D., Liu Y., et al. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: a systematic review and meta-analysis // J Adv Nurs. 2021. Vol. 77, N 8. P. 3255–3273. doi: 10.1111/jan.14800

[107]

Gao Y, Ma L, Lin C, et al. Effects of virtual reality-based intervention on cognition, motor function, mood, and activities of daily living in patients with chronic stroke: a systematic review and meta-analysis of randomized controlled trials. Front Aging Neurosci. 2021;13:766525. doi: 10.3389/fnagi.2021.766525

[108]

Gao Y., Ma L., Lin C., et al. Effects of virtual reality-based intervention on cognition, motor function, mood, and activities of daily living in patients with chronic stroke: a systematic review and meta-analysis of randomized controlled trials // Front Aging Neurosci. 2021. Vol. 13. P. 766525. doi: 10.3389/fnagi.2021.766525

[109]

Barcala L, Grecco LA, Colella F, et al. Visual biofeedback balance training using wii fit after stroke: a randomized controlled trial. J Phys Ther Sci. 2013;25(8):1027–1032. doi: 10.1589/jpts.25.1027

[110]

Barcala L., Grecco L.A., Colella F., et al. Visual biofeedback balance training using wii fit after stroke: a randomized controlled trial // J Phys Ther Sci. 2013. Vol. 25, N 8. P. 1027–1032. doi: 10.1589/jpts.25.1027

[111]

Kayabinar B, Alemdaroğlu-Gürbüz İ, Yilmaz Ö. The effects of virtual reality augmented robot-assisted gait training on dual-task performance and functional measures in chronic stroke: a randomized controlled single-blind trial. Eur J Phys Rehabil Med. 2021;57(2):227–237. doi: 10.23736/S1973-9087.21.06441-8

[112]

Kayabinar B., Alemdaroğlu-Gürbüz İ., Yilmaz Ö. The effects of virtual reality augmented robot-assisted gait training on dual-task performance and functional measures in chronic stroke: a randomized controlled single-blind trial // Eur J Phys Rehabil Med. 2021. Vol. 57, N 2. P. 227–237. doi: 10.23736/S1973-9087.21.06441-8

[113]

Chen L, Lo WL, Mao YR, et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. Biomed Res Int. 2016;2016:7309272. doi: 10.1155/2016/7309272

[114]

Chen L., Lo W.L., Mao Y.R., et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review // Biomed Res Int. 2016. Vol. 2016. P. 7309272. doi: 10.1155/2016/7309272

[115]

Bruni MF, Melegari C, De Cola MC, et al. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis. J Clin Neurosci. 2018;48:11–17. doi: 10.1016/j.jocn.2017.10.048

[116]

Bruni M.F., Melegari C., De Cola M.C., et al. What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis // J Clin Neurosci. 2018. Vol. 48. P. 11–17. doi: 10.1016/j.jocn.2017.10.048

[117]

Bergmann J, Krewer C, Bauer P, et al. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial. Eur J Phys Rehabil Med. 2018;54(3):397–407. doi: 10.23736/S1973-9087.17.04735-9

[118]

Bergmann J., Krewer C., Bauer P., et al. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial // Eur J Phys Rehabil Med. 2018. Vol. 54, N 3. P. 397–407. doi: 10.23736/S1973-9087.17.04735-9

[119]

Wiley E, Khattab S, Tang A. Examining the effect of virtual rea lity therapy on cognition post-stroke: a systematic review and meta-analysis. Disabil Rehabil Assist Technol. 2022;17(1):50–60. doi: 10.1080/17483107.2020.1755376

[120]

Wiley E., Khattab S., Tang A. Examining the effect of virtual reality therapy on cognition post-stroke: a systematic review and meta-analysis // Disabil Rehabil Assist Technol. 2022. Vol. 17, N 1. P. 50–60. doi: 10.1080/17483107.2020.1755376

[121]

Bernhardt J, Borschmann KN, Kwakkel G, et al. Setting the scene for the second stroke recovery and rehabilitation roundtable. Int J Stroke. 2019;14(5):450–456. doi: 10.1177/1747493019851287

[122]

Bernhardt J., Borschmann K.N., Kwakkel G., et al. Setting the scene for the second stroke recovery and rehabilitation roundtable // Int J Stroke. 2019. Vol. 14, N 5. P. 450–456. doi: 10.1177/1747493019851287

[123]

Maggio MG, Latella D, Maresca G, et al. Virtual reality and cognitive rehabilitation in people with stroke: an overview. J Neurosci Nurs. 2019;51(2):101–105. doi: 10.1097/JNN.0000000000000423

[124]

Maggio M.G., Latella D., Maresca G., et al. Virtual reality and cognitive rehabilitation in people with stroke: an overview // J Neurosci Nurs. 2019. Vol. 51, N 2. P. 101–105. doi: 10.1097/JNN.0000000000000423

Funding

грант Правительства г. МосквыGovernment of Moscow(0912-1/22)

RIGHTS & PERMISSIONS

Kostenko E.V., Petrova L.V., Pogonchenkova I.V., Kopasheva V.D.

AI Summary AI Mindmap
PDF

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/