miRNA-122 as a new player in cardiovascular disease

Amina M. Alieva , Natalia V. Teplova , Elena V. Reznik , Irina E. Baykova , Lidiya M. Shnakhova , Gayane G. Totolyan , Ramiz K. Valiev , Elina A. Skripnichenko , Irina A. Kotikova , Igor G. Nikitin

Russian Medicine ›› 2022, Vol. 28 ›› Issue (6) : 451 -463.

PDF
Russian Medicine ›› 2022, Vol. 28 ›› Issue (6) : 451 -463. DOI: 10.17816/medjrf111180
Reviews
review-article

miRNA-122 as a new player in cardiovascular disease

Author information +
History +
PDF

Abstract

Identification of a new significant level of regulation of gene activity using small non-coding molecules of ribonucleic acid — miRNA — can be confidently considered as one of the most outstanding discoveries of modern science It became clear that the suppression of gene expression caused by miRNA is an extremely important universal mechanism widely involved in most intracellular signaling pathways. Current data on the role of miRNA-122 in the development of cardiovascular diseases is included in this review. miRNA-122 is positioned as a promising biological marker in cardiovascular pathology. miRNA-122 promotes inflammation, oxidative stress, and apoptosis in cardiovascular disease. Clinical and experimental studies support the pathophysiological role of miRNA-122 in fibrosis and cardiac dysfunction. Overexpression of miRNA-122 exacerbates the loss of autophagy and enhances angiotensin II-mediated inflammation, apoptosis, fibrosis, and cardiac dysfunction. miRNA-122 should be considered not only as a promising diagnostic and prognostic tool, but also as a target for modern medicine. Inhibition of miRNA-122 results in antifibrotic, antiapoptotic, anti-inflammatory, antioxidant, and pro-autophagic effects. Further study is required to evaluate the real diagnostic and therapeutic potential of miRNA-122.

Keywords

cardiovascular disease / ribonucleic acid / inflammation / apoptosis / autophagy / fibrosis / remodeling / heart failure

Cite this article

Download citation ▾
Amina M. Alieva, Natalia V. Teplova, Elena V. Reznik, Irina E. Baykova, Lidiya M. Shnakhova, Gayane G. Totolyan, Ramiz K. Valiev, Elina A. Skripnichenko, Irina A. Kotikova, Igor G. Nikitin. miRNA-122 as a new player in cardiovascular disease. Russian Medicine, 2022, 28(6): 451-463 DOI:10.17816/medjrf111180

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aushev VN. microRNA: small molecules of great significance. Klin Onkogematol. 2015;8(1):1–12. (In Russ).

[2]

Аушев В.Н. МикроРНК: малые молекулы с большим значением // Клиническая онкогематология. 2015. Т. 8, № 1. С. 1–12.

[3]

Alieva AM, Teplova NV, Kislyakov VA, et al. Biomarkers in cardiology: microRNA and heart failure. Therapy. 2022;8(1):60–70. (In Russ). doi: 10.18565/therapy.2022.1.60-70

[4]

Алиева А.М., Теплова Н.В., Кисляков В.А., и др. Биомаркеры в кардиологии: микроРНК и сердечная недостаточность // Терапия. 2022. Т. 8, № 1. С. 60–70. doi: 10.18565/therapy.2022.1.60-70

[5]

Beylerli OA, Gareev IF, Beylerli AT. Micro RNAs as new players in control of hypothalamic functions. Creative Surgery and Oncology. 2019;9(2):138–143. (In Russ). doi: 10.24060/2076-3093-2019-9-2-138-143

[6]

Бейлерли О.А., Гареев И.Ф., Бейлерли А.Т. Микро-РНК как новые игроки в контроле функций гипоталамуса // Креативная хирургия и онкология. 2019. Т. 9, № 2. С. 138–143. doi: 10.24060/2076-3093-2019-9-2-138-143

[7]

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. doi: 10.1016/0092-8674(93)90529-y

[8]

Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 // Cell. 1993. Vol. 75, N 5. P. 843–854. doi: 10.1016/0092-8674(93)90529-y

[9]

Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–906. doi: 10.1038/35002607

[10]

Reinhart B.J., Slack F.J., Basson M., et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans // Nature. 2000. Vol. 403, N 6772. P. 901–906. doi: 10.1038/35002607

[11]

Meijer HA, Smith EM, Bushell M. Regulation of miRNA strand selection: follow the leader? Biochem Soc Trans. 2014;42(4):1135–1140. doi: 10.1042/BST20140142

[12]

Meijer H.A., Smith E.M., Bushell M. Regulation of miRNA strand selection: follow the leader? // Biochem Soc Trans. 2014. Vol. 42, N 4. P. 1135–1140. doi: 10.1042/BST20140142

[13]

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233. doi: 10.1016/j.cell.2009.01.002

[14]

Bartel D.P. MicroRNAs: target recognition and regulatory functions // Cell. 2009. Vol. 136, N 2. P. 215–233. doi: 10.1016/j.cell.2009.01.002

[15]

Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature. 2011;469(7330):336–342. doi: 10.1038/nature09783

[16]

Small E.M., Olson E.N. Pervasive roles of microRNAs in cardiovascular biology // Nature. 2011. Vol. 469, N 7330. P. 336–342. doi: 10.1038/nature09783

[17]

Willeit P, Skroblin P, Kiechl S, et al. Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease? Eur Heart J. 2016;37(43):3260–3266. doi: 10.1093/eurheartj/ehw146

[18]

Willeit P., Skroblin P., Kiechl S., et al. Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease? // Eur Heart J. 2016. Vol. 37, N 43. P. 3260–3266. doi: 10.1093/eurheartj/ehw146

[19]

Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–689. doi: 10.1038/nature04303

[20]

Krutzfeldt J., Rajewsky N., Braich R., et al. Silencing of microRNAs in vivo with ‘antagomirs’ // Nature. 2005. Vol. 438, N 7068. P. 685–689. doi: 10.1038/nature04303

[21]

Fernandez-Hernando C, Ramirez CM, Goedeke L, Suarez Y. MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol. 2013;33(2):178–185. doi: 10.1161/atvbaha.112.300144

[22]

Fernandez-Hernando C., Ramirez C.M., Goedeke L., Suarez Y. MicroRNAs in metabolic disease // Arterioscler Thromb Vasc Biol. 2013. Vol. 33, N 2. P. 178–185. doi: 10.1161/atvbaha.112.300144

[23]

Liu Y, Song JW, Lin JY, et al. Roles of microRNA-122 in cardiovascular fibrosis and related diseases. Cardiovasc Toxicol. 2020;20(5):463–473. doi: 10.1007/s12012-020-09603-4

[24]

Liu Y., Song J.W., Lin J.Y., et al. Roles of microRNA-122 in cardiovascular fibrosis and related diseases // Cardiovasc Toxicol. 2020. Vol. 20, N 5. P. 463–473. doi: 10.1007/s12012-020-09603-4

[25]

Peterlin A, Pocivavsek K, Petrovic D, Peterlin B. The role of microRNAs in heart failure: a systematic review. Front Cardiovasc Med. 2020;7:161. doi: 10.3389/fcvm.2020.00161

[26]

Peterlin A., Pocivavsek K., Petrovic D., Peterlin B. The role of microRNAs in heart failure: a systematic review // Front Cardiovasc Med. 2020. Vol. 7. P. 161. doi: 10.3389/fcvm.2020.00161

[27]

Song JJ, Yang M, Liu Y, et al. MicroRNA-122 aggravates angiotensin II-mediated apoptosis and autophagy imbalance in rat aortic adventitial fibroblasts via the modulation of SIRT6-elabela-ACE2 signaling. Eur J Pharmacol. 2020;883:173374. doi: 10.1016/j.ejphar.2020.173374

[28]

Song J.J., Yang M., Liu Y., et al. MicroRNA-122 aggravates angiotensin II-mediated apoptosis and autophagy imbalance in rat aortic adventitial fibroblasts via the modulation of SIRT6-elabela-ACE2 signaling // Eur J Pharmacol. 2020. Vol. 883. P. 173374. doi: 10.1016/j.ejphar.2020.173374

[29]

Zhao Z, Zhong L, Li P, et al. Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages via exosomal miR-122-5p. Exp Cell Res. 2020;387(1):111738. doi: 10.1016/j.yexcr.2019.111738

[30]

Zhao Z., Zhong L., Li P., et al. Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages via exosomal miR-122-5p // Exp Cell Res. 2020. Vol. 387, N 1. P. 111738. doi: 10.1016/j.yexcr.2019.111738

[31]

Rivoli L, Vliegenthart AD, de Potter CM, et al. The effect of renal dysfunction and haemodialysis on circulating liver specific miR-122. Br J Clin Pharmacol. 2017;83(3):584–592. doi: 10.1111/bcp.13136

[32]

Rivoli L., Vliegenthart A.D., de Potter C.M., et al. The effect of renal dysfunction and haemodialysis on circulating liver specific miR-122 // Br J Clin Pharmacol. 2017. Vol. 83, N 3. P. 584–592. doi: 10.1111/bcp.13136

[33]

Ma Z, Song JJ, Martin S, et al. The Elabela-APJ axis: a promising therapeutic target for heart failure. Heart Fail Rev. 2021;26(5):1249–1258. doi: 10.1007/s10741-020-09957-5

[34]

Ma Z., Song J.J., Martin S., et al. The Elabela-APJ axis: a promising therapeutic target for heart failure // Heart Fail Rev. 2020. Vol. 26, N 5. P. 1249–1258. doi: 10.1007/s10741-020-09957-5

[35]

Pinar AA, Scott TE, Huuskes BM, et al. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacol Ther. 2020;209:107511. doi: 10.1016/j.pharmthera.2020.107511

[36]

Pinar A.A., Scott T.E., Huuskes B.M., et al. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis // Pharmacol Ther. 2020. Vol. 209. P. 107511. doi: 10.1016/j.pharmthera.2020.107511

[37]

Xu R, Zhang ZZ, Chen LJ, et al. Ascending aortic adventitial remodeling and fibrosis are ameliorated with Apelin-13 in rats after TAC via suppression of the miRNA-122 and LGR4-β-catenin signaling. Peptides. 2016;86:85–94. doi: 10.1016/j.peptides.2016.10.005

[38]

Xu R., Zhang Z.Z., Chen L.J., et al. Ascending aortic adventitial remodeling and fibrosis are ameliorated with Apelin-13 in rats after TAC via suppression of the miRNA-122 and LGR4-β-catenin signaling // Peptides. 2016. Vol. 86. P. 85–94. doi: 10.1016/j.peptides.2016.10.005

[39]

Song JJ, Ma Z, Wang J, et al. Gender differences in hypertension. J Cardiovasc Transl Res. 2020;13(1):47–54. doi: 10.1007/s12265-019-09888-z

[40]

Song J.J., Ma Z., Wang J., et al. Gender differences in hypertension // J Cardiovasc Transl Res. 2020. Vol. 13, N 1. P. 47–54. doi: 10.1007/s12265-019-09888-z

[41]

Hu J, Wu H, Wang D, et al. LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis. Biochimie. 2019;157:102–110. doi: 10.1016/j.biochi.2018.10.011

[42]

Hu J., Wu H., Wang D., et al. LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis // Biochimie. 2019. Vol. 157. P. 102–110. doi: 10.1016/j.biochi.2018.10.011

[43]

Qu XH, Zhang K. MiR-122 regulates cell apoptosis and ROS by targeting DJ-1 in renal ischemic reperfusion injury rat models. Eur Rev Med Pharmacol Sci. 2020;24(13):7197. doi: 10.26355/eurrev_202007_21846

[44]

Qu X.H., Zhang K. MiR-122 regulates cell apoptosis and ROS by targeting DJ-1 in renal ischemic reperfusion injury rat models // Eur Rev Med Pharmacol Sci. 2020. Vol. 24, N 13. P. 7197. doi: 10.26355/eurrev_202007_21846

[45]

Wang Y, Liang H, Jin F, et al. Injured liver-released miRNA-122 elicits acute pulmonary inflammation via activating alveolar macrophage TLR7 signaling pathway. Proc Natl Acad Sci U S A. 2019;116(13):6162–6171. doi: 10.1073/pnas.1814139116

[46]

Wang Y., Liang H., Jin F., et al. Injured liver-released miRNA-122 elicits acute pulmonary inflammation via activating alveolar macrophage TLR7 signaling pathway // Proc Natl Acad Sci USA. 2019. Vol. 116, N 13. P. 6162–6171. doi: 10.1073/pnas.1814139116

[47]

Hu Y, Du G, Li G, et al. The miR-122 inhibition alleviates lipid accumulation and inflammation in NAFLD cell model. Arch Physiol Biochem. 2021;127(5):385–389. doi: 10.1080/13813455.2019.1640744

[48]

Hu Y., Du G., Li G., et al. The miR-122 inhibition alleviates lipid accumulation and inflammation in NAFLD cell model // Arch Physiol Biochem. 2021. Vol. 127, N 5. P. 385–389. doi: 10.1080/13813455.2019.1640744

[49]

Snyder-Talkington BN, Dong C, Sargent LM, et al. mRNAs and miRNAs in whole blood associated with lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled carbon nanotube inhalation exposure in mice. J Appl Toxicol. 2016;36(1):161–174. doi: 10.1002/jat.3157

[50]

Snyder-Talkington B.N., Dong C., Sargent L.M., et al. mRNAs and miRNAs in whole blood associated with lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled carbon nanotube inhalation exposure in mice // J Appl Toxicol. 2016. Vol. 36, N 1. P. 161–174. doi: 10.1002/jat.3157

[51]

Weber GJ, Purkayastha B, Ren L, et al. Hypertension exaggerates renovascular resistance via miR-122-associated stress response in aging. J Hypertens. 2018;36(11):2226–2236. doi: 10.1097/hjh.0000000000001770

[52]

Weber G.J., Purkayastha B., Ren L., et al. Hypertension exaggerates renovascular resistance via miR-122-associated stress response in aging // J Hypertens. 2018. Vol. 36, N 11. P. 2226–2236. doi: 10.1097/HJH.0000000000001770

[53]

Song G, Zhu L, Ruan Z, et al. MicroRNA-122 promotes cardiomyocyte hypertrophy via targeting FoxO3. Biochem Biophys Res Commun. 2019;519(4):682–688. doi: 10.1016/j.bbrc.2019.09.035

[54]

Song G., Zhu L., Ruan Z., et al. MicroRNA-122 promotes cardiomyocyte hypertrophy via targeting FoxO3 // Biochem Biophys Res Commun. 2019. Vol. 519, N 4. P. 682–688. doi: 10.1016/j.bbrc.2019.09.035

[55]

Chen LJ, Xu R, Yu HM, et al. The ACE2/Apelin signaling, microRNAs, and hypertension. Int J Hypertens. 2015;2015:896861. doi: 10.1155/2015/896861

[56]

Chen L.J., Xu R., Yu H.M., et al. The ACE2/Apelin signaling, microRNAs, and hypertension // Int J Hypertens. 2015. Vol. 2015. P. 896861. doi: 10.1155/2015/896861

[57]

Wang Y, Jin P, Liu J, Xie X. Exosomal microRNA-122 mediates obesity-related cardiomyopathy through suppressing mitochondrial ADP-ribosylation factor-like 2. Clin Sci (Lond). 2019;133(17):1871–1881. doi: 10.1042/CS20190558

[58]

Wang Y., Jin P., Liu J., Xie X. Exosomal microRNA-122 mediates obesity-related cardiomyopathy through suppressing mitochondrial ADP-ribosylation factor-like 2 // Clin Sci (Lond). 2019. Vol. 133, N 17. P. 1871–1881. doi: 10.1042/CS20190558

[59]

Liu Y, Dong ZJ, Song JW, et al. MicroRNA-122-5p promotes renal fibrosis and injury in spontaneously hypertensive rats by targeting FOXO3. Exp Cell Res. 2022;411(2):113017. doi: 10.1016/j.yexcr.2022.113017

[60]

Liu Y., Dong Z.J., Song J.W., et al. MicroRNA-122-5p promotes renal fibrosis and injury in spontaneously hypertensive rats by targeting FOXO3 // Exp Cell Res. 2022. Vol. 411, N 2. P. 113017. doi: 10.1016/j.yexcr.2022.113017

[61]

Zhang ZZ, Cheng YW, Jin HY, et al. The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling. Oncotarget. 2017;8(42):72302–72314. doi: 10.18632/oncotarget.20305

[62]

Zhang Z.Z., Cheng Y.W., Jin H.Y., et al. The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling // Oncotarget. 2017. Vol. 8, N 42. P. 72302–72314. doi: 10.18632/oncotarget.20305

[63]

Song J, Zhang Z, Dong Z, et al. MicroRNA-122-5p aggravates angiotensin II-mediated myocardial fibrosis and dysfunction in hypertensive rats by regulating the Elabela/Apelin-APJ and ACE2-GDF15-porimin signaling. J Cardiovasc Transl Res. 2022;15(3):535–547. doi: 10.1007/s12265-022-10214-3

[64]

Song J., Zhang Z., Dong Z., et al. MicroRNA-122-5p aggravates angiotensin II-mediated myocardial fibrosis and dysfunction in hypertensive rats by regulating the Elabela/Apelin-APJ and ACE2-GDF15-porimin signaling // J Cardiovasc Transl Res. 2022. Vol. 15, N 3. P. 535–547. doi: 10.1007/s12265-022-10214-3

[65]

Zhang HG, Zhang QJ, Li BW, et al. The circulating level of miR-122 is a potential risk factor for endothelial dysfunction in young patients with essential hypertension. Hypertens Res. 2020;43(6):511–517. doi: 10.1038/s41440-020-0405-5

[66]

Zhang H.G., Zhang Q.J., Li B.W., et al. The circulating level of miR-122 is a potential risk factor for endothelial dysfunction in young patients with essential hypertension // Hypertens Res. 2020. Vol. 43, N 6. P. 511–517. doi: 10.1038/s41440-020-0405-5

[67]

Solis-Toro D, Mosquera Escudero M, Garcia-Perdomo H.A. Association between circulating microRNAs and the metabolic syndrome in adult populations: a systematic review. Diabetes Metab Syndr. 2022;16(1):102376. doi: 10.1016/j.dsx.2021.102376

[68]

Solis-Toro D., Mosquera Escudero M., Garcia-Perdomo H.A. Association between circulating microRNAs and the metabolic syndrome in adult populations: a systematic review // Diabetes Metab Syndr. 2022. Vol. 16, N 1. P. 102376. doi: 10.1016/j.dsx.2021.102376

[69]

Hutny M, Hofman J, Zachurzok A, Matusik P. MicroRNAs as the promising markers of comorbidities in childhood obesity-A systematic review. Pediatr Obes. 2022;17(6):e12880. doi: 10.1111/ijpo.12880

[70]

Hutny M., Hofman J., Zachurzok A., Matusik P. MicroRNAs as the promising markers of comorbidities in childhood obesity-A systematic review // Pediatr Obes. 2022. Vol. 17, N 6. P. e12880. doi: 10.1111/ijpo.12880

[71]

Streese L, Demougin P, Iborra P, et al. Untargeted sequencing of circulating microRNAs in a healthy and diseased older population. Sci Rep. 2022;12(1):2991. doi: 10.1038/s41598-022-06956-4

[72]

Streese L., Demougin P., Iborra P., et al. Untargeted sequencing of circulating microRNAs in a healthy and diseased older population // Sci Rep. 2022. Vol. 12, N 1. P. 2991. doi: 10.1038/s41598-022-06956-4

[73]

Refeat MM, Hassan NA, Ahmad IH, et al. Correlation of circulating miRNA-33a and miRNA-122 with lipid metabolism among Egyptian patients with metabolic syndrome. J Genet Eng Biotechnol. 2021;19(1):147. doi: 10.1186/s43141-021-00246-8

[74]

Refeat M.M., Hassan N.A., Ahmad I.H., et al. Correlation of circulating miRNA-33a and miRNA-122 with lipid metabolism among Egyptian patients with metabolic syndrome // J Genet Eng Biotechnol. 2021. Vol. 19, N 1. P. 147. doi: 10.1186/s43141-021-00246-8

[75]

Lischka J, Schanzer A, Hojreh A, et al. Circulating microRNAs 34a, 122, and 192 are linked to obesity-associated inflammation and metabolic disease in pediatric patients. Int J Obes (Lond). 2021;45(8):1763–1772. doi: 10.1038/s41366-021-00842-1

[76]

Lischka J., Schanzer A., Hojreh A., et al. Circulating microRNAs 34a, 122, and 192 are linked to obesity-associated inflammation and metabolic disease in pediatric patients // Int J Obes (Lond). 2021. Vol. 45, N 8. P. 1763–1772. doi: 10.1038/s41366-021-00842-1

[77]

Hess AL, Larsen LH, Udesen PB, et al. Levels of circulating miR-122 are associated with weight loss and metabolic syndrome. Obesity (Silver Spring). 2020;28(3):493–501. doi: 10.1002/oby.22704

[78]

Hess A.L., Larsen L.H., Udesen P.B., et al. Levels of circulating miR-122 are associated with weight loss and metabolic syndrome // Obesity (Silver Spring). 2020. Vol. 28, N 3. P. 493–501. doi: 10.1002/oby.22704

[79]

Zhang HN, Xu QQ, Thakur A, et al. Endothelial dysfunction in diabetes and hypertension: role of microRNAs and long non-coding RNAs. Life Sci. 2018;213:258–268. doi: 10.1016/j.lfs.2018.10.028

[80]

Zhang H.N., Xu Q.Q., Thakur A., et al. Endothelial dysfunction in diabetes and hypertension: role of microRNAs and long non-coding RNAs // Life Sci. 2018. Vol. 213. P. 258–268. doi: 10.1016/j.lfs.2018.10.028

[81]

Liang W, Guo J, Li J, et al. Downregulation of miR-122 attenuates hypoxia/reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochem Biophys Res Commun. 2016;478(3):1416–1422. doi: 10.1016/j.bbrc.2016.08.139

[82]

Liang W., Guo J., Li J., et al. Downregulation of miR-122 attenuates hypoxia/reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4 // Biochem Biophys Res Commun. 2016. Vol. 478, N 3. P. 1416–1422. doi: 10.1016/j.bbrc.2016.08.139

[83]

Sygitowicz G, Maciejak-Jastrzebska A, Sitkiewicz D. MicroRNAs in the development of left ventricular remodeling and postmyocardial infarction heart failure. Polish Archives of Internal Medicine. 2020;130(1):59–65. doi: 10.20452/pamw.15137

[84]

Sygitowicz G., Maciejak-Jastrzebska A., Sitkiewicz D. MicroRNAs in the development of left ventricular remodeling and postmyocardial infarction heart failure // Polish Archives of Internal Medicine. 2020. Vol. 130, N 1. P. 59–65. doi: 10.20452/pamw.15137

[85]

Liao CH, Wang CY, Liu KH, et al. MiR-122 marks the differences between subcutaneous and visceral adipose tissues and associates with the outcome of bariatric surgery. Obes Res Clin Pract. 2018;12(6):570–577. doi: 10.1016/j.orcp.2018.06.005

[86]

Liao C.H., Wang C.Y., Liu K.H., et al. MiR-122 marks the differences between subcutaneous and visceral adipose tissues and associates with the outcome of bariatric surgery // Obes Res Clin Pract. 2018. Vol. 12, N 6. P. 570–577. doi: 10.1016/j.orcp.2018.06.005

[87]

Martinez-Micaelo N, Beltran-Debon R, Baiges I, et al. Specific circulating microRNA signature of bicuspid aortic valve disease. J Transl Med. 2017;15(1):76. doi: 10.1186/s12967-017-1176-x

[88]

Martinez-Micaelo N., Beltran-Debon R., Baiges I., et al. Specific circulating microRNA signature of bicuspid aortic valve disease // J Transl Med. 2017. Vol. 15, N 1. P. 76. doi: 10.1186/s12967-017-1176-x

[89]

Wang YL, Yu W. Association of circulating microRNA-122 with presence and severity of atherosclerotic lesions. Peer J. 2018;6:e5218. doi: 10.7717/peerj.5218

[90]

Wang Y.L., Yu W. Association of circulating microRNA-122 with presence and severity of atherosclerotic lesions // Peer J. 2018. Vol. 6. P. e5218. doi: 10.7717/peerj.5218

[91]

Li Y, Yang N, Dong B, et al. MicroRNA-122 promotes endothelial cell apoptosis by targeting XIAP: therapeutic implication for atherosclerosis. Life Sci. 2019;232:116590. doi: 10.1016/j.lfs.2019.116590

[92]

Li Y., Yang N., Dong B., et al. MicroRNA-122 promotes endothelial cell apoptosis by targeting XIAP: therapeutic implication for atherosclerosis // Life Sci. 2019. Vol. 232. P. 116590. doi: 10.1016/j.lfs.2019.116590

[93]

Wu X, Du X, Yang Y, et al. Inhibition of miR-122 reduced atherosclerotic lesion formation by regulating NPAS3-mediated endothelial to mesenchymal transition. Life Sci. 2021;265:118816. doi: 10.1016/j.lfs.2020.118816

[94]

Wu X., Du X., Yang Y., et al. Inhibition of miR-122 reduced atherosclerotic lesion formation by regulating NPAS3-mediated endothelial to mesenchymal transition // Life Sci. 2021. Vol. 265. P. 118816. doi: 10.1016/j.lfs.2020.118816

[95]

Šatrauskienė A, Navickas R, Laucevičius A, et al. MiR-1, miR-122, miR-132, and miR-133 are related to subclinical aortic atherosclerosis associated with metabolic syndrome. Int J Environ Res Public Health. 2021;18(4):1483. doi: 10.3390/ijerph18041483

[96]

Šatrauskienė A., Navickas R., Laucevičius A., et al. MiR-1, miR-122, miR-132, and miR-133 are related to subclinical aortic atherosclerosis associated with metabolic syndrome // Int J Environ Res Public Health. 2021. Vol. 18, N 4. P. 1483. doi: 10.3390/ijerph18041483

[97]

Badacz R, Kleczynski P, Legutko J, et al. Expression of miR-1-3p, miR-16-5p and miR-122-5p as possible risk factors of secondary cardiovascular events. Biomedicines. 2021;9(8):1055. doi: 10.3390/biomedicines9081055

[98]

Badacz R, Kleczyński P, Legutko J, et al. Expression of miR-1-3p, miR-16-5p and miR-122-5p as possible risk factors of secondary cardiovascular events // Biomedicines. 2021. Vol. 9, N 8. P. 1055. doi: 10.3390/biomedicines9081055

[99]

Barraclough JY, Joan M, Joglekar MV, et al. MicroRNAs as prognostic markers in acute coronary syndrome patients-a systematic review. Cells. 2019;8(12):1572. doi: 10.3390/cells8121572

[100]

Barraclough J.Y., Joan M., Joglekar M.V., et al. MicroRNAs as prognostic markers in acute coronary syndrome patients-a systematic review // Cells. 2019. Vol. 8, N 12. P. 1572. doi: 10.3390/cells8121572

[101]

Ling H, Guo Z, Du S, et al. Serum exosomal miR-122-5p is a new biomarker for both acute coronary syndrome and underlying coronary artery stenosis. Biomarkers. 2020;25(7):539–547. doi: 10.1080/1354750X.2020.1803963

[102]

Ling H., Guo Z., Du S., et al. Serum exosomal miR-122-5p is a new biomarker for both acute coronary syndrome and underlying coronary artery stenosis // Biomarkers. 2020. Vol. 25, N 7. P. 539–547. doi: 10.1080/1354750X.2020.1803963

[103]

Yao XL, Lu XL, Yan CY, et al. Circulating miR-122-5p as a potential novel biomarker for diagnosis of acute myocardial infarction. Int J Clin Exp Pathol. 2015;8(12):16014–16019.

[104]

Yao X.L., Lu X.L., Yan C.Y., et al. Circulating miR-122-5p as a potential novel biomarker for diagnosis of acute myocardial infarction // Int J Clin Exp Pathol. 2015. Vol. 8, N 12. P. 16014–16019.

[105]

Wang Y, Chang W, Zhang Y, et al. Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J Cell Physiol. 2019;234(4):4778–4786. doi: 10.1002/jcp.27274

[106]

Wang Y., Chang W., Zhang Y., et al. Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction // J Cell Physiol. 2019. Vol. 234, N 4. P. 4778–4786. doi: 10.1002/jcp.27274

[107]

Cortez-Dias N, Costa MC, Carrilho-Ferreira P, et al. Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction. Circ J. 2016;80(10):2183–2191. doi: 10.1253/circj.cj-16-0568

[108]

Cortez-Dias N., Costa M.C., Carrilho-Ferreira P., et al. Circulating miR-122-5p/miR-133b ratio is a specific early prognostic biomarker in acute myocardial infarction // Circ J. 2016. Vol. 80, N 10. P. 2183–2191. doi: 10.1253/circj.cj-16-0568

[109]

Hänninen M, Jäntti T, Tolppanen H, et al. Association of miR-21-5p, miR-122-5p, and miR-320a-3p with 90-day mortality in cardiogenic shock. Int J Mol Sci. 2020;21(21):7925. doi: 10.3390/ijms21217925

[110]

Hänninen M., Jäntti T., Tolppanen H., et al. Association of miR-21-5p, miR-122-5p, and miR-320a-3p with 90-day mortality in cardiogenic shock // Int J Mol Sci. 2020. Vol. 21, N 21. P. 7925. doi: 10.3390/ijms21217925

[111]

Lin J, Zheng X. Salvianolate blocks apoptosis during myocardial infarction by down regulating miR-122-5p. Curr Neurovasc Res. 2017;14(4):323–329. doi: 10.2174/1567202614666171026114630

[112]

Lin J., Zheng X. Salvianolate blocks apoptosis during myocardial infarction by down regulating miR-122-5p // Curr Neurovasc Res. 2017. Vol. 14, N 4. P. 323–329. doi: 10.2174/1567202614666171026114630

[113]

Gaddam RR, Dhuri K, Kim YR, et al. γ peptide nucleic acid-based miR-122 inhibition rescues vascular endothelial dysfunction in mice fed a high-fat diet. J Med Chem. 2022;65(4):3332–3342. doi: 10.1021/acs.jmedchem.1c01831

[114]

Gaddam R.R., Dhuri K., Kim Y.R., et al. γ peptide nucleic acid-based miR-122 inhibition rescues vascular endothelial dysfunction in mice fed a high-fat diet // J Med Chem. 2022. Vol. 65, N 4. P. 3332–3342. doi: 10.1021/acs.jmedchem.1c01831

[115]

Peterlin A, Počivavšek K, Petrovič D, Peterlin B. The role of microRNAs in heart failure: a systematic review. Front Cardiovasc Med. 2020;7:161. doi: 10.3389/fcvm.2020.00161

[116]

Peterlin A., Počivavšek K., Petrovič D., Peterlin B. The role of microRNAs in heart failure: a systematic review // Front Cardiovasc Med. 2020. Vol. 7. P. 161. doi: 10.3389/fcvm.2020.00161

[117]

Liu X, Meng H, Jiang C, et al. Differential microRNA expression and regulation in the rat model of post-infarction heart failure. PLoS One. 2016;11(8):e0160920. doi: 10.1371/journal.pone.0160920

[118]

Liu X., Meng H., Jiang C., et al. Differential microRNA expression and regulation in the rat model of post-infarction heart failure // PLoS One. 2016. Vol. 11, N 8. P. e0160920. doi: 10.1371/journal.pone.0160920

[119]

Andersson P, Gidlöf O, Braun OO, et al. Plasma levels of liver-specific mir-122 is massively increased in a porcine cardiogenic shock model and attenuated by hypothermia. Shock. 2012;37(2):234–238. doi: 10.1097/shk.0b013e31823f1811

[120]

Andersson P, Gidlöf O, Braun OO, et al. Plasma levels of liver-specific mir-122 is massively increased in a porcine cardiogenic shock model and attenuated by hypothermia // Shock. 2012. Vol. 37, N 2. P. 234–238. doi: 10.1097/shk.0b013e31823f1811

[121]

Shi Y, Zhang Z, Yin Q, et al. Cardiac-specific overexpression of miR-122 induces mitochondria-dependent cardiomyocyte apoptosis and promotes heart failure by inhibiting Hand2. J Cell Mol Med. 2021;25(11):5326–5334. doi: 10.1111/jcmm.16544

[122]

Shi Y., Zhang Z., Yin Q., et al. Cardiac-specific overexpression of miR-122 induces mitochondria-dependent cardiomyocyte apoptosis and promotes heart failure by inhibiting Hand2 // J Cell Mol Med. 2021. Vol. 25, N 11. P. 5326–5334. doi: 10.1111/jcmm.16544

[123]

Koyama S, Kuragaichi T, Sato Y, et al. Dynamic changes of serum microRNA-122-5p through therapeutic courses indicates amelioration of acute liver injury accompanied by acute cardiac decompensation. ESC Heart Fail. 2017;4(2):112–121. doi: 10.1002/ehf2.12123

[124]

Koyama S., Kuragaichi T., Sato Y., et al. Dynamic changes of serum microRNA-122-5p through therapeutic courses indicates amelioration of acute liver injury accompanied by acute cardiac decompensation // ESC Heart Fail. 2017. Vol. 4, N 2. P. 112–121. doi: 10.1002/ehf2.12123

[125]

Vogel B, Keller A, Frese KS, et al. Multivariate MiRNA signatures as biomarkers for non-ischaemic systolic heart failure. Eur Heart J. 2013;34(36):2812–2823. doi: 10.1093/eurheartj/eht256

[126]

Vogel B., Keller A., Frese K.S., et al. Multivariate MiRNA signatures as biomarkers for non-ischaemic systolic heart failure // Eur Heart J. 2013. Vol. 34, N 36. P. 2812–2823. doi: 10.1093/eurheartj/eht256

[127]

Cakmak HA, Coskunpinar E, Ikitimur B, et al. The prognostic value of circulating micrornas in heart failure: preliminary results from a genome-wide expression study. J Cardiovasc Med (Hagerstown). 2015;16(6):431–437. doi: 10.2459/jcm.0000000000000233

[128]

Cakmak H.A., Coskunpinar E., Ikitimur B., et al. The prognostic value of circulating micrornas in heart failure: preliminary results from a genome-wide expression study // J Cardiovasc Med (Hagerstown). 2015. Vol. 16, N 6. P. 431–437. doi: 10.2459/jcm.0000000000000233

[129]

Stojkovic S, Koller L, Sulzgruber P, et al. Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure. Int J Cardiol. 2020;303:80–85. doi: 10.1016/j.ijcard.2019.11.090

[130]

Stojkovic S., Koller L., Sulzgruber P., et al. Liver-specific microRNA-122 as prognostic biomarker in patients with chronic systolic heart failure // Int J Cardiol. 2020. Vol. 303. P. 80–85. doi: 10.1016/j.ijcard.2019.11.090

[131]

Hosen MR, Goody PR, Zietzer A, et al. Circulating microRNA-122-5p is associated with a lack of improvement in left ventricular function after transcatheter aortic valve replacement and regulates viability of cardiomyocytes through extracellular vesicles. Circulation. 2022;122:060258. doi: 10.1161/circulationaha.122.060258

[132]

Hosen M.R., Goody P.R., Zietzer A., et al. Circulating microRNA-122-5p is associated with a lack of improvement in left ventricular function after transcatheter aortic valve replacement and regulates viability of cardiomyocytes through extracellular vesicles // Circulation. 2022. Vol. 122. P. 060258. doi: 10.1161/circulationaha.122.060258

[133]

Zhang X, Jing W. Upregulation of miR-122 is associated with cardiomyocyte apoptosis in atrial fibrillation. Mol Med Rep. 2018;18(2):1745–1751. doi: 10.3892/mmr.2018.9124

[134]

Zhang X., Jing W. Upregulation of miR-122 is associated with cardiomyocyte apoptosis in atrial fibrillation // Mol Med Rep. 2018. Vol. 18, N 2. P. 1745–1751. doi: 10.3892/mmr.2018.9124

[135]

Chen C, Li R, Ross RS, Manso AM. Integrins and integrin-related proteins in cardiac fibrosis. J Mol Cell Cardiol. 2016;93:162–174. doi: 10.1016/j.yjmcc.2015.11.010

[136]

Chen C., Li R., Ross R.S., Manso A.M. Integrins and integrin-related proteins in cardiac fibrosis // J Mol Cell Cardiol. 2016. Vol. 93. P. 162–174. doi: 10.1016/j.yjmcc.2015.11.010

[137]

Zhang Z, Li H, Cui Z, et al. Long non-coding RNA UCA1 relieves cardiomyocytes H9c2 injury aroused by oxygen-glucose deprivation via declining miR-122. Artif Cells Nanomed Biotechnol. 2019;47(1):3492–3499. doi: 10.1080/21691401.2019.1652630

[138]

Zhang Z., Li H., Cui Z., et al. Long non-coding RNA UCA1 relieves cardiomyocytes H9c2 injury aroused by oxygen-glucose deprivation via declining miR-122 // Artif Cells Nanomed Biotechnol. 2019. Vol. 47, N 1. P. 3492–3499. doi: 10.1080/21691401.2019.1652630

[139]

Bai C, Liu Y, Zhao Y, et al. Circulating exosome-derived miR-122-5p is a novel biomarker for prediction of postoperative atrial fibrillation. J Cardiovasc Transl Res. 2022;15(6):1393–1405. doi: 10.1007/s12265-022-10267-4

[140]

Bai C., Liu Y., Zhao Y., et al. Circulating exosome-derived miR-122-5p is a novel biomarker for prediction of postoperative atrial fibrillation // J Cardiovasc Transl Res. 2022. Vol. 15, N 6. P. 1393–1405. doi: 10.1007/s12265-022-10267-4

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/