Interleukin-13 and cardiovascular diseases: literature review
Amina Magomedovna Alieva , Elena Vladimirovna Reznik , Natalia Vadimovna Teplova , Leyla Ramazanovna Sarakaeva , Elena Valerievna Surskaya , Dzhannet Anuarovna Elmurzaeva , Madina Yakubovna Shavaeva , Alik Magomedovich Rakhaev , Irina Aleksandrovna Kotikova , Igor Gennadievich Nikitin
Russian Medicine ›› 2022, Vol. 28 ›› Issue (4) : 291 -304.
Interleukin-13 and cardiovascular diseases: literature review
Cardiovascular diseases remain the leading cause of death worldwide despite significant advances in medicine and increased life expectancy. It is very important to search for and study new cardiovascular biological markers that can help the early diagnosis of cardiovascular diseases, serve as a laboratory tool for assessing the effectiveness of treatment, be a predictive marker of possible adverse clinical outcomes, and be a significant criterion for risk stratification. This review aims to consider interleukin-13 (IL-13) as a diagnostic and prognostic biomarker in cardiovascular pathology. IL-13 is involved in the development of many cardiovascular diseases, according to various in vitro and in vivo studies, but its role remains unclear until the end. IL-13 has a positive effect, promoting the development of the heart at an early stage and facilitating the recovery of the heart after a myocardial infarction. Due to the induction of fibrosis and adverse cardiac remodeling, long-term IL-13 synthesis appears to be a risk factor for adverse outcomes in chronic cardiovascular diseases, such as heart failure. Understanding the effect of IL-13 on cardiac metabolism will shed light on possible new pathogenetic mechanisms for the development of heart disease. As a rule, an increase in the level of IL-13 in the blood serum goes in parallel with its expression in the tissues of the heart. However, the dissociation of systemic inflammatory reactions and local expression is not excluded. The introduction of IL-13 can restore the regenerative capacity of cardiomyocytes and reduce cardiac dysfunction. IL-13 deficiency limits the proliferation of cardiomyocytes, induces compensatory hypertrophy of cardiomyocytes in vitro and deletion of IL-13, leads to cardiac dysplasia, and impairs recovery processes in vivo. Although IL-13 is associated with cardiac fibrosis, cardiomyocyte proliferation, myocardial hypertrophy, immune cell recruitment and differentiation, and chemokine secretion in the heart, it is precise signaling pathways and underlying mechanisms of action remain poorly understood.
cardiovascular diseases / biological markers / interleukin-13 / atherosclerosis / myocardial infarction / heart failure
| [1] |
Roth GA, Johnson C, Abajobir A, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. doi: 10.1016/j.jacc.2017.04.052 |
| [2] |
Roth G.A., Johnson C., Abajobir A., et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015 // J Am Coll Cardiol. 2017. Vol. 70, N 1. P. 1–25. doi: 10.1016/j.jacc.2017.04.052 |
| [3] |
Almazroi AA. Survival prediction among heart patients using machine learning techniques. Math Biosci Eng. 2022;19(1):134–145. doi: 10.3934/mbe.2022007 |
| [4] |
Almazroi A.A. Survival prediction among heart patients using machine learning techniques // Math Biosci Eng. 2022. Vol. 19, N 1. P. 134–145. doi: 10.3934/mbe.2022007 |
| [5] |
Shapoval IN, Nikitina SYu. Zdravookhranenie v Rossii 2019. Stat. sb. Moscow: Rosstat; 2019. Available at: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2019.pdf. Accessed: 26.08.2022. (In Russ). |
| [6] |
Шаповал И.Н., Никитина С.Ю. Здравоохранение в России 2019. Стат. сб. М.: Росстат, 2019. Режим доступа: https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2019.pdf. Дата обращения: 26.08.2022. |
| [7] |
Alieva AM, Baykova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;(91):145–149. (In Russ). doi: 10.26442/00403660.2019.09.000226 |
| [8] |
Алиева А.М., Байкова И.Е., Кисляков В.А., и др. Галектин-3: диагностическая и прогностическая ценность определения у пациентов с хронической сердечной недостаточностью // Терапевтический архив. 2019. Т. 91, № 9. С. 145–149. doi: 10.26442/00403660.2019.09.000226 |
| [9] |
Alieva AM, Pinchuk TV, Almazova II, et al. Dinical value of blood biomarker ST2 in patients with chronic heart failure. Consilium Medicum. 2021;23(6):522–526. (In Russ). doi: 10.26442/20751753.2021.6.200606 |
| [10] |
Алиева А.М., Пинчук Т.В., Алмазова И.И., и др. Клиническое значение определения биомаркера крови ST2 у больных с хронической сердечной недостаточностью // Consilium Medicum. 2021. Т. 23, № 6. С. 522–526. doi: 10.26442/20751753.2021.6.200606 |
| [11] |
Alieva AM, Almazova II, Pinchuk TV, et al. Fractalkin and cardiovascular diseas. Consilium Medicum. 2020;22(5):83–86. (In Russ). doi: 10.26442/20751753.2020.5.200186 |
| [12] |
Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Фракталкин и сердечно-сосудистые заболевания // Consilium Medicum. 2020. Т. 22, № 5. С. 83–86. doi: 10.26442/20751753.2020.5.200186 |
| [13] |
Goswami SK, Ranjan P, Dutta RK, Verma SK. Management of inflammation in cardiovascular diseases. Pharmacol Res. 2021;173:105912. doi: 10.1016/j.phrs.2021.105912 |
| [14] |
Goswami S.K., Ranjan P., Dutta R.K., Verma S.K. Management of inflammation in cardiovascular diseases // Pharmacol Res. 2021. N 173. P. 105912. doi: 10.1016/j.phrs.2021.105912 |
| [15] |
Schiattarella GG, Sequeira V, Ameri P. Distinctive patterns of inflammation across the heart failure syndrome. Heart Fail Rev. 2021;26(6):1333–1344. doi: 10.1007/s10741-020-09949-5 |
| [16] |
Schiattarella G.G., Sequeira V., Ameri P. Distinctive patterns of inflammation across the heart failure syndrome // Heart Fail Rev. 2021. Vol. 26, N 6. P. 1333–1344. doi: 10.1007/s10741-020-09949-5 |
| [17] |
Alieva AM, Teplova NV, Batov MA, et al. Pentraxin-3, a promising biological marker in heart failure: literature review. Consilium Medicum. 2022;24(1):53–59. (In Russ). doi: 10.26442/20751753.2022.1.201382 |
| [18] |
Алиева А.М., Теплова Н.В., Батов М.А., и др. Пентраксин-3 — перспективный биологический маркер при сердечной недостаточности: литературный обзор // Consilium Medicum. 2022. Т. 24, № 1. С. 53–59. doi: 10.26442/20751753.2022.1.201382 |
| [19] |
Adamo L, Rocha-Resende C, Prabhu SD, Mann DL. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol. 2020;17(5):269–285. doi: 10.1038/s41569-019-0315-x |
| [20] |
Adamo L., Rocha-Resende C., Prabhu S.D., Mann D.L. Reappraising the role of inflammation in heart failure // Nat Rev Cardiol. 2020. Vol. 17, N 5. P. 269–285. doi: 10.1038/s41569-019-0315-x |
| [21] |
Qian N, Gao Y, Wang J, Wang Y. Emerging role of interleukin-13 in cardiovascular diseases: A ray of hope. J Cell Mol Med. 2021;25(12):5351–5357. doi: 10.1111/jcmm.16566 |
| [22] |
Qian N., Gao Y., Wang J., Wang Y. Emerging role of interleukin-13 in cardiovascular diseases: A ray of hope // J Cell Mol Med. 2021. Vol. 25, N 12. P. 5351–5357. doi: 10.1111/jcmm.16566 |
| [23] |
Pelaia C, Heffler E, Crimi C, et al. Interleukins 4 and 13 in Asthma: Key Pathophysiologic Cytokines and Druggable Molecular Targets. Front Pharmacol. 2022;13:851940. doi: 10.3389/fphar.2022.851940 |
| [24] |
Pelaia C., Heffler E., Crimi C., et al. Interleukins 4 and 13 in Asthma: Key Pathophysiologic Cytokines and Druggable Molecular Targets // Front Pharmacol. 2022. N 13. P. 851940. doi: 10.3389/fphar.2022.851940 |
| [25] |
Knudson KM, Hwang S, McCann MS, et al. Recent Advances in IL-13Rα2-Directed Cancer Immunotherapy. Front Immunol. 2022; 13:878365. doi: 10.3389/fimmu.2022.878365 |
| [26] |
Knudson K.M., Hwang S., McCann M.S., et al. Recent Advances in IL-13Rα2-Directed Cancer Immunotherapy // Front Immunol. 2022. N 13. P. 878365. doi: 10.3389/fimmu.2022.878365 |
| [27] |
Ntontsi P, Papathanassiou E, Loukides S, et al. Targeted anti-IL-13 therapies in asthma: current data and future perspectives. Expert Opin Investig Drugs. 2018;27(2):179–186. doi: 10.1080/13543784.2018.1427729 |
| [28] |
Ntontsi P., Papathanassiou E., Loukides S., et al. Targeted anti-IL-13 therapies in asthma: current data and future perspectives // Expert Opin Investig Drugs. 2018. Vol. 27, N 2. P. 179–186. doi: 10.1080/13543784.2018.1427729 |
| [29] |
Nussbaum JC, Van Dyken SJ, von Moltke J, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502(7470):245–248. doi: 10.1038/nature12526 |
| [30] |
Nussbaum J.C., Van Dyken S.J., von Moltke J., et al. Type 2 innate lymphoid cells control eosinophil homeostasis // Nature. 2013. Vol. 502, N 7470. P. 245–248. doi: 10.1038/nature12526 |
| [31] |
Vivier E, Artis D, Colonna M, et al. Innate Lymphoid Cells: 10 Years On. Cell. 2018;174(5):1054–1066. doi: 10.1016/j.cell.2018.07.017 |
| [32] |
Vivier E., Artis D., Colonna M., et al. Innate Lymphoid Cells: 10 Years On // Cell. 2018. Vol. 174, N 5. P. 1054–1066. doi: 10.1016/j.cell.2018.07.017 |
| [33] |
Krabbendam L, Bal SM, Spits H, Golebski K. New insights into the function, development, and plasticity of type 2 innate lymphoid cells. Immunol Rev. 2018;286(1):74–85. doi: 10.1111/imr.12708 |
| [34] |
Krabbendam L., Bal S.M., Spits H., Golebski K. New insights into the function, development, and plasticity of type 2 innate lymphoid cells // Immunol Rev. 2018. Vol. 286, N 1. P. 74–85. doi: 10.1111/imr.12708 |
| [35] |
Deng Y, Wu S, Yang Y, et al. Unique Phenotypes of Heart Resident Type 2 Innate Lymphoid Cells. Front Immunol. 2020;11:802. doi: 10.3389/fimmu.2020.00802 |
| [36] |
Deng Y., Wu S., Yang Y., et al. Unique Phenotypes of Heart Resident Type 2 Innate Lymphoid Cells // Front Immunol. 2020. N 11. P. 802. doi: 10.3389/fimmu.2020.00802 |
| [37] |
Iwaszko M, Biały S, Bogunia-Kubik K. Significance of Interleukin (IL)-4 and IL-13 in Inflammatory Arthritis. Cells. 2021;10(11):3000. doi: 10.3390/cells10113000 |
| [38] |
Iwaszko M., Biały S., Bogunia-Kubik K. Significance of Interleukin (IL)-4 and IL-13 in Inflammatory Arthritis // Cells. 2021. Vol. 10, N 11. P. 3000. doi: 10.3390/cells10113000 |
| [39] |
Shi J, Song X, Traub B, et al. Involvement of IL-4, IL-13 and Their Receptors in Pancreatic Cancer. Int J Mol Sci. 2021;22(6):2998. doi: 10.3390/ijms22062998 |
| [40] |
Shi J., Song X., Traub B., et al. Involvement of IL-4, IL-13 and Their Receptors in Pancreatic Cancer // Int J Mol Sci. 2021. Vol. 22, N 6. P. 2998. doi: 10.3390/ijms22062998 |
| [41] |
Chen FM, Tse JK, Jin L, et al. Type 2 innate immunity drives distinct neonatal immune profile conducive for heart regeneration. Theranostics. 2022;12(3):1161–1172. doi: 10.7150/thno.67515 |
| [42] |
Chen F.M., Tse J.K., Jin L., et al. Type 2 innate immunity drives distinct neonatal immune profile conducive for heart regeneration // Theranostics. 2022. Vol. 12, N 3. P. 1161–1172. doi: 10.7150/thno.67515 |
| [43] |
Mineev VN, Sorokina LN, Trofimov VI, et al. Interleukin 4 and interleukin 13 receptors: structure, function and genetic polymorphism. Pulmonology. 2010;(3):113–119. (In Russ). doi: 10.18093/0869-0189-2010-3-113-119 |
| [44] |
Минеев В.Н., Сорокина Л.Н., Трофимов В.И., и др. Рецепторы к интерлейкину-4 и -13: строение, функция и генетический полиморфизм // Пульмонология. 2010. №3. С. 113–119. doi: 10.18093/0869-0189-2010-3-113-119 |
| [45] |
Junttila IS. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front Immunol. 2018;9:888. doi: 10.3389/fimmu.2018.00888 |
| [46] |
Junttila I.S. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes // Front Immunol. 2018. N 9. P. 888. doi: 10.3389/fimmu.2018.00888 |
| [47] |
Biros E, Reznik JE, Moran CS. Role of inflammatory cytokines in genesis and treatment of atherosclerosis. Trends Cardiovasc Med. 2022;32(3):138–142. doi: 10.1016/j.tcm.2021.02.001 |
| [48] |
Biros E., Reznik J.E., Moran C.S. Role of inflammatory cytokines in genesis and treatment of atherosclerosis // Trends Cardiovasc Med. 2022. Vol. 32, N 3. P. 138–142. doi: 10.1016/j.tcm.2021.02.001 |
| [49] |
Kassem KM, Ali M, Rhaleb NE. Interleukin 4: Its Role in Hypertension, Atherosclerosis, Valvular, and Nonvalvular Cardiovascular Diseases. Cardiovasc Pharmacol Ther. 2020;25(1):7–14. doi: 10.1177/1074248419868699 |
| [50] |
Kassem K.M., Ali M., Rhaleb N.E. Interleukin 4: Its Role in Hypertension, Atherosclerosis, Valvular, and Nonvalvular Cardiovascular Diseases // Cardiovasc Pharmacol Ther. 2020. Vol. 25, N 1. P. 7–14. doi: 10.1177/1074248419868699 |
| [51] |
Bobryshev YV, Ivanova EA, Chistiakov DA, et al. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. Biomed Res Int. 2016;2016:9582430. doi: 10.1155/2016/9582430 |
| [52] |
Bobryshev Y.V., Ivanova E.A., Chistiakov D.A., et al. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis // Biomed Res Int. 2016. N 2016. P. 9582430. doi: 10.1155/2016/9582430 |
| [53] |
Zhao XN, Li YN, Wang YT. Interleukin-4 regulates macrophage polarization via the MAPK signaling pathway to protect against atherosclerosis. Genet Mol Res. 2016;15(1). doi: 10.4238/gmr.15017348 |
| [54] |
Zhao X.N., Li Y.N., Wang Y.T. Interleukin-4 regulates macrophage polarization via the MAPK signaling pathway to protect against atherosclerosis // Genet Mol Res. 2016. Vol. 15, N. 1. doi: 10.4238/gmr.15017348 |
| [55] |
Dutova SV, Saranchina JV, Karpova MR, et al. Cytokines and atherosclerosis, new research directions. Bulletin of Siberian Medicine. 2018;17(4):199–208. (In Russ). doi: 10.20538/1682-0363-2018-4-199-207 |
| [56] |
Дутова С.В., Саранчина Ю.В., Карпова М.Р., и др. Цитокины и атеросклероз — новые направления исследований // Бюллетень сибирской медицины. 2018. Т. 17, № 4. С. 199–208. doi: 10.20538/1682-0363-2018-4-199-207 |
| [57] |
Cardilo-Reis L, Gruber S, Schreier SM. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med. 2012;4(10):1072–1086. doi: 10.1002/emmm.201201374 |
| [58] |
Cardilo-Reis L., Gruber S., Schreier S.M. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype // EMBO Mol Med. 2012. Vol. 4, N 10. P. 1072–1086. doi: 10.1002/emmm.201201374 |
| [59] |
Boccardi V, Paolacci L, Croce MF, et al. Lower serum levels of IL-13 is associated with increased carotid intima-media thickness in old age subjects. Aging Clin Exp Res. 2020;32(7):1289–1294. doi: 10.1007/s40520-019-01313-4 |
| [60] |
Boccardi V., Paolacci L., Croce M.F., et al. Lower serum levels of IL-13 is associated with increased carotid intima-media thickness in old age subjects // Aging Clin Exp Res. 2020. Vol. 32, N 7. P. 1289–1294. doi: 10.1007/s40520-019-01313-4 |
| [61] |
Raaz-Schrauder D, Klinghammer L, Baum C, et al. Association of systemic inflammation markers with the presence and extent of coronary artery calcification. Cytokine. 2012;57(2):251–257. doi: 10.1016/j.cyto.2011.11.015 |
| [62] |
Raaz-Schrauder D., Klinghammer L., Baum C., et al. Association of systemic inflammation markers with the presence and extent of coronary artery calcification // Cytokine. 2012. Vol. 57, N 2. P. 251–257. doi: 10.1016/j.cyto.2011.11.015 |
| [63] |
Zha LF, Nie SF, Chen QW, et al. IL-13 may be involved in the development of CAD via different mechanisms under different conditions in a Chinese Han population. Sci Rep. 2018;8(1):6182. doi: 10.1038/s41598-018-24592-9 |
| [64] |
Zha L.F., Nie S.F., Chen Q.W., et al. IL-13 may be involved in the development of CAD via different mechanisms under different conditions in a Chinese Han population // Sci Rep. 2018. Vol. 8, N 1. P. 6182. doi: 10.1038/s41598-018-24592-9 |
| [65] |
Boles U, Johansson A, Wiklund U, et al. Cytokine Disturbances in Coronary Artery Ectasia Do Not Support Atherosclerosis Pathogenesis. Int J Mol Sci. 2018;19(1):260. doi: 10.3390/ijms19010260 |
| [66] |
Boles U., Johansson A., Wiklund U., et al. Cytokine Disturbances in Coronary Artery Ectasia Do Not Support Atherosclerosis Pathogenesis // Int J Mol Sci. 2018. Vol. 19, N 1. P. 260. doi: 10.3390/ijms19010260 |
| [67] |
Hofmann U, Knorr S, Vogel B, et al. Interleukin-13 deficiency aggravates healing and remodeling in male mice after experimental myocardial infarction. Circ Heart Fail. 2014;7(5):822–830. doi: 10.1161/circheartfailure.113.001020 |
| [68] |
Hofmann U., Knorr S., Vogel B., et al. Interleukin-13 deficiency aggravates healing and remodeling in male mice after experimental myocardial infarction // Circ Heart Fail. 2014. Vol. 7, N 5. P. 822–830. doi: 10.1161/circheartfailure.113.001020 |
| [69] |
Yuan D, Tie J, Xu Z, et al. Dynamic Profile of CD4+ T-Cell-Associated Cytokines, Chemokines following Murine Myocardial Infarction, Reperfusion. Mediators Inflamm. 2019;2019:9483647. doi: 10.1155/2019/9483647 |
| [70] |
Yuan D., Tie J., Xu Z., et al. Dynamic Profile of CD4+ T-Cell-Associated Cytokines/Chemokines following Murine Myocardial Infarction/Reperfusion // Mediators Inflamm. 2019. N 2019. P. 9483647. doi: 10.1155/2019/9483647 |
| [71] |
Jafarzadeh A, Esmaeeli-Nadimi A, Nough H, et al. Serum levels of interleukin (IL)-13, IL-17 and IL-18 in patients with ischemic heart disease. Anadolu Kardiyol Derg. 2009;9(2):75–83. |
| [72] |
Jafarzadeh A., Esmaeeli-Nadimi A., Nough H., et al. Serum levels of interleukin (IL)-13, IL-17 and IL-18 in patients with ischemic heart disease // Anadolu Kardiyol Derg. 2009. Vol. 9, N 2. P. 75–83. |
| [73] |
Parisi V, Cabaro S, D’Esposito V, et al. Epicardial Adipose Tissue and IL-13 Response to Myocardial Injury Drives Left Ventricular Remodeling After ST Elevation Myocardial Infarction. Front Physiol. 2020;11:575181. doi: 10.3389/fphys.2020.575181 |
| [74] |
Parisi V., Cabaro S., D’Esposito V., et al. Epicardial Adipose Tissue and IL-13 Response to Myocardial Injury Drives Left Ventricular Remodeling After ST Elevation Myocardial Infarction // Front Physiol. 2020. N 11. P. 575181. doi: 10.3389/fphys.2020.575181 |
| [75] |
Wang J, Liu M, Wu Q, et al. Human Embryonic Stem Cell-Derived Cardiovascular Progenitors Repair Infarcted Hearts Through Modulation of Macrophages via Activation of Signal Transducer and Activator of Transcription 6. Antioxid Redox Signal. 2019;31(5):369–386. doi: 10.1089/ars.2018.7688 |
| [76] |
Wang J., Liu M., Wu Q., et al. Human Embryonic Stem Cell-Derived Cardiovascular Progenitors Repair Infarcted Hearts Through Modulation of Macrophages via Activation of Signal Transducer and Activator of Transcription 6 // Antioxid Redox Signal. 2019. Vol. 31, N 5. P. 369–386. doi: 10.1089/ars.2018.7688 |
| [77] |
Korotaeva AA, Samoilova EV, Mindzaev DR, et al. Pro-inflammatory cytokines in chronic cardiac failure: state of problem. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(11):1389–1394. (In Russ). doi: 10.26442/00403660.2021.11.201170 |
| [78] |
Коротаева А.А., Самойлова Е.В., Миндзаев Д.Р., и др. Провоспалительные цитокины при хронической сердечной недостаточности: состояние проблемы // Терапевтический архив. 2021. Т. 93, № 11. С. 1389–1394. doi: 10.26442/00403660.2021.11.201170 |
| [79] |
Cieslik KA, Taffet GE, Carlson S, et al. Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart. J Mol Cell Cardiol. 2011;50(1):248–256. doi: 10.1016/j.yjmcc.2010.10.019 |
| [80] |
Cieslik K.A., Taffet G.E., Carlson S., et al. Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart // J Mol Cell Cardiol. 2011. Vol. 50, N 1. P. 248–256. doi: 10.1016/j.yjmcc.2010.10.019 |
| [81] |
Yuan L, Chen X, Cheng L, et al. HDAC11 regulates interleukin-13 expression in CD4+ T cells in the heart. J Mol Cell Cardiol. 2018;122:1–10. doi: 10.1016/j.yjmcc.2018.07.253 |
| [82] |
Yuan L., Chen X., Cheng L., et al. HDAC11 regulates interleukin-13 expression in CD4+ T cells in the heart // J Mol Cell Cardiol. 2018. N 122. P. 1–10. doi: 10.1016/j.yjmcc.2018.07.253 |
| [83] |
Amit U, Kain D, Wagner A, et al. New Role for Interleukin-13 Receptor α1 in Myocardial Homeostasis and Heart Failure. J Am Heart Assoc. 2017;6(5):e005108. doi: 10.1161/JAHA.116.005108 |
| [84] |
Amit U., Kain D., Wagner A., et al. New Role for Interleukin-13 Receptor α1 in Myocardial Homeostasis and Heart Failure // J Am Heart Assoc. 2017. Vol. 6, N 5. P. e005108. doi: 10.1161/JAHA.116.005108 |
| [85] |
Nishimura Y, Inoue T, Nitto T, et al. Increased interleukin-13 levels in patients with chronic heart failure. Int J Cardiol. 2009;131(3):421–423. doi: 10.1016/j.ijcard.2007.07.128 |
| [86] |
Nishimura Y., Inoue T., Nitto T., et al. Increased interleukin-13 levels in patients with chronic heart failure // Int J Cardiol. 2009. Vol. 131, N 3. P. 421–423. doi: 10.1016/j.ijcard.2007.07.128 |
| [87] |
Amir O, Spivak I, Lavi I, Rahat MA. Changes in the monocytic subsets CD14(dim)CD16(+) and CD14(++) CD16(-) in chronic systolic heart failure patients. Mediators Inflamm. 2012;2012:616384. doi: 10.1155/2012/616384 |
| [88] |
Amir O., Spivak I., Lavi I., Rahat M.A. Changes in the monocytic subsets CD14(dim)CD16(+) and CD14(++) CD16(-) in chronic systolic heart failure patients // Mediators Inflamm. 2012. N 2012. P. 616384. doi: 10.1155/2012/616384 |
| [89] |
Qiu X, Ma F, Zhang H. Circulating Levels of IL-13, TGF-β1, and Periostin as Potential Biomarker for Coronary Artery Disease with Acute Heart Failure. Evid Based Complement Alternat Med. 2021;2021:1690421. doi: 10.1155/2021/1690421 |
| [90] |
Qiu X., Ma F., Zhang H. Circulating Levels of IL-13, TGF-β1, and Periostin as Potential Biomarker for Coronary Artery Disease with Acute Heart Failure // Evid Based Complement Alternat Med. 2021. N 2021. P. 1690421. doi: 10.1155/2021/1690421 |
| [91] |
Ohtsuka T, Inoue K, Hara Y, et al. Serum markers of angiogenesis and myocardial ultrasonic tissue characterization in patients with dilated cardiomyopathy. Eur J Heart Fail. 2005;7(4):689–695. doi: 10.1016/j.ejheart.2004.09.011 |
| [92] |
Ohtsuka T., Inoue K., Hara Y., et al. Serum markers of angiogenesis and myocardial ultrasonic tissue characterization in patients with dilated cardiomyopathy // Eur J Heart Fail. 2005. Vol. 7, N 4. P. 689–695. doi: 10.1016/j.ejheart.2004.09.011 |
| [93] |
Diakos NA, Taleb I, Kyriakopoulos CP, et al. Circulating and Myocardial Cytokines Predict Cardiac Structural and Functional Improvement in Patients with Heart Failure Undergoing Mechanical Circulatory Support. J Am Heart Assoc. 2021;10(20):e020238. doi: 10.1161/JAHA.120.020238 |
| [94] |
Diakos N.A., Taleb I., Kyriakopoulos C.P., et al. Circulating and Myocardial Cytokines Predict Cardiac Structural and Functional Improvement in Patients with Heart Failure Undergoing Mechanical Circulatory Support // J Am Heart Assoc. 2021. Vol. 10, N 20. P. e020238. doi: 10.1161/JAHA.120.020238 |
| [95] |
Shipulin VM, Chumakova SP, Pogonchenkova DA, et al. Interleukin-10 and non-classical monocytes as biomarkers of ischemic cardiomyopathy. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2020;24(1):45–53. (In Russ). doi: 10.21688/1681-3472-2020-1-45-53 |
| [96] |
Шипулин В.М., Чумакова С.П., Погонченкова Д.А., и др. Дисбаланс цитокинов и численность неклассических моноцитов в крови при сердечной недостаточности ишемического генеза // Патология кровообращения и кардиохирургия. 2020. Т. 24, № 1. С. 45–53. doi: 10.21688/1681-3472-2020-1-45-53 |
| [97] |
Bruestle K, Hackner K, Kreye G, Heidecker B. Autoimmunity in Acute Myocarditis: How Immunopathogenesis Steers New Directions for Diagnosis and Treatment. Curr Cardiol Rep. 2020;22(5):28. doi: 10.1007/s11886-020-01278-1 |
| [98] |
Bruestle K., Hackner K., Kreye G., Heidecker B. Autoimmunity in Acute Myocarditis: How Immunopathogenesis Steers New Directions for Diagnosis and Treatment // Curr Cardiol Rep. 2020. Vol. 22, N 5. P. 28. doi: 10.1007/s11886-020-01278-1 |
| [99] |
Cihakova D, Barin JG, Afanasyeva M, et al. Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation. Am J Pathol. 2008;172(5):1195–1208. doi: 10.2353/ajpath.2008.070207 |
| [100] |
Cihakova D., Barin J.G., Afanasyeva M., et al. Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation // Am J Pathol. 2008. Vol. 172, N 5. P. 1195–1208. doi: 10.2353/ajpath.2008.070207 |
| [101] |
Kolivand S, Amini P, Saffar H, et al. Selenium-L-methionine modulates radiation injury and Duox1 and Duox2 upregulation in rat’s heart tissues. J Cardiovasc Thorac Res. 2019;11(2):121–126. doi: 10.15171/jcvtr.2019.21 |
| [102] |
Kolivand S., Amini P., Saffar H., et al. Selenium-L-methionine modulates radiation injury and Duox1 and Duox2 upregulation in rat’s heart tissues // J Cardiovasc Thorac Res. 2019. Vol. 11, N 2. P. 121–126. doi: 10.15171/jcvtr.2019.21 |
| [103] |
Yang H, Chen Y, Gao C. Interleukin-13 reduces cardiac injury and prevents heart dysfunction in viral myocarditis via enhanced M2 macrophage polarization. Oncotarget. 2017;8(59):99495–99503. doi: 10.18632/oncotarget.20111 |
| [104] |
Yang H., Chen Y., Gao C. Interleukin-13 reduces cardiac injury and prevents heart dysfunction in viral myocarditis via enhanced M2 macrophage polarization // Oncotarget. 2017. Vol. 8, N 59. P. 99495–99503. doi: 10.18632/oncotarget.20111 |
| [105] |
Zhang Y, Zhang M, Li X, et al. Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages. Sci Rep. 2016;6:22613. doi: 10.1038/srep22613 |
| [106] |
Zhang Y., Zhang M., Li X., et al. Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages // Sci Rep. 2016. N 6. P. 22613. doi: 10.1038/srep22613 |
| [107] |
Rotter Sopasakis V, Sandstedt J, Johansson M, et al. Toll-like receptor-mediated inflammation markers are strongly induced in heart tissue in patients with cardiac disease under both ischemic and non-ischemic conditions. Int J Cardiol. 2019;293:238–247. doi: 10.1016/j.ijcard.2019.06.033 |
| [108] |
Rotter Sopasakis V., Sandstedt J., Johansson M., et al. Toll-like receptor-mediated inflammation markers are strongly induced in heart tissue in patients with cardiac disease under both ischemic and non-ischemic conditions // Int J Cardiol. 2019. N 293. P. 238–247. doi: 10.1016/j.ijcard.2019.06.033 |
| [109] |
Vianello E, Marrocco-Trischitta Massimiliano M, Dozio E, et al. Correlational study on altered epicardial adipose tissue as a stratification risk factor for valve disease progression through IL-13 signaling. J Mol Cell Cardiol. 2019;132:210–218. doi: 10.1016/j.yjmcc.2019.05.012 |
| [110] |
Vianello E., Marrocco-Trischitta Massimiliano M., et al. Correlational study on altered epicardial adipose tissue as a stratification risk factor for valve disease progression through IL-13 signaling // J Mol Cell Cardiol. 2019. N. 132. P. 210–218. doi: 10.1016/j.yjmcc.2019.05.012 |
| [111] |
Liu Q, Qiao WH, Li FF, et al. The Role of Interleukin-13 in Patients with Rheumatic Valvular Fibrosis: A Clinical and Histological Study. J Heart Valve Dis. 2015;24(4):496–501. |
| [112] |
Liu Q., Qiao W.H., Li F.F., et al. The Role of Interleukin-13 in Patients with Rheumatic Valvular Fibrosis: A Clinical and Histological Study // J Heart Valve Dis. 2015. Vol. 24, N 4. P. 496–501. |
| [113] |
Zlatanova I, Pinto C, Bonnin P, et al. Iron Regulator Hepcidin Impairs Macrophage-Dependent Cardiac Repair After Injury. Circulation. 2019;139(12):1530–1547. doi: 10.1161/circulationaha.118.034545 |
| [114] |
Zlatanova I., Pinto C., Bonnin P., et al. Iron Regulator Hepcidin Impairs Macrophage-Dependent Cardiac Repair After Injury // Circulation. 2019. Vol. 139, N 12. P. 1530–1547. doi: 10.1161/CIRCULATIONAHA.118.034545 |
| [115] |
Malek Mohammadi M, Kattih B, Grund A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9(2):265–279. doi: 10.15252/emmm.201606602 |
| [116] |
Malek Mohammadi M., Kattih B., Grund A., et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice // EMBO Mol Med. 2017. Vol. 9, N 2. P. 265–279. doi: 10.15252/emmm.201606602 |
| [117] |
Wodsedalek DJ, Paddock SJ, Wan TC, et al. IL-13 promotes in vivo neonatal cardiomyocyte cell cycle activity and heart regeneration. Am J Physiol Heart Circ Physiol. 2019;316(1):H24–H34. doi: 10.1152/ajpheart.00521.2018 |
| [118] |
Wodsedalek D.J., Paddock S.J., Wan T.C., et al. IL-13 promotes in vivo neonatal cardiomyocyte cell cycle activity and heart regeneration // Am J Physiol Heart Circ Physiol. 2019. Vol. 316, N 1. P. H24–H34. doi: 10.1152/ajpheart.00521.2018 |
| [119] |
Knudsen NH, Stanya KJ, Hyde AL, et al. Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science. 2020;368(6490):eaat3987. doi: 10.1126/science.aat3987 |
| [120] |
Knudsen N.H., Stanya K.J., Hyde A.L., et al. Interleukin-13 drives metabolic conditioning of muscle to endurance exercise // Science. 2020. Vol. 368, N 6490. P. eaat3987. doi: 10.1126/science.aat3987 |
| [121] |
Li AW, Lim WA. Engineering cytokines and cytokine circuits. Science. 2020;370(6520):1034–1035. doi: 10.1126/science.abb5607 |
| [122] |
Li A.W., Lim W.A. Engineering cytokines and cytokine circuits // Science. 2020. Vol. 370, N 6520. P. 1034–1035. doi: 10.1126/science.abb5607 |
| [123] |
O’Meara CC, Wamstad JA, Gladstone RA, et al. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res. 2015;116(5):804–815. doi: 10.1161/circresaha.116.304269 |
| [124] |
O’Meara C.C., Wamstad J.A., Gladstone R.A., et al . Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration // Circ Res. 2015. Vol. 116, N 5. P. 804–815. doi: 10.1161/CIRCRESAHA.116.304269 |
| [125] |
Aliyeva AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine (Russian Journal). 2020;98(3):203–209. (In Russ). doi: 10.30629/0023-2149-2020-98-3-203-209 |
| [126] |
Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний // Клиническая медицина. 2020. Т. 98, № 3. С. 203–209. doi: 10.30629/0023-2149-2020-98-3-203-209 |
| [127] |
Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. (In Russ). doi: 10.20514/2226-6704-2018-8-5-333-345 |
| [128] |
Алиева А.М., Резник Е.В., Гасанова Э.Т., и др. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью // Архивъ внутренней медицины. 2018. Т. 8, № 5. С. 333–345. doi: 10.20514/2226-6704-2018-8-5-333-345 |
| [129] |
Ky B, French B, Levy WC, et al. Multiple biomarkers for risk prediction in chronic heart failure. Circ Heart Fail. 2012;5(2):183–190. doi: 10.1161/circheartfailure.111.965020 |
| [130] |
Ky B., French B., Levy W.C., et al. Multiple biomarkers for risk prediction in chronic heart failure // Circ Heart Fail. 2012. Vol. 5, N 2. P. 183–190. doi: 10.1161/circheartfailure.111.965020 |
| [131] |
Bayes-Genis A, Richards AM, Maisel AS, et al. Multimarker testing with ST2 in chronic heart failure. Am J Cardiol. 2015;115(7):76B–80B. doi: 10.1016/j.amjcard.2015.01.045 |
| [132] |
Bayes-Genis A., Richards A.M., Maisel A.S., et al. Multimarker testing with ST2 in chronic heart failure // Am J Cardiol. 2015. Vol. 115, N 7. P. 76B–80B. doi: 10.1016/j.amjcard.2015.01.045 |
| [133] |
Lupón J, de Antonio M, Galán A, et al. Combined use of the novel biomarkers high-sensitivity troponin T and ST2 for heart failure risk stratification vs conventional assessment. Mayo Clin Proc. 2013;88(3):234–243. doi: 10.1016/j.mayocp.2012.09.016 |
| [134] |
Lupón J., de Antonio M., Galán A., et al. Combined use of the novel biomarkers high-sensitivity troponin T and ST2 for heart failure risk stratification vs conventional assessment // Mayo Clin Proc. 2013. Vol. 88, N 3. P. 234–243. doi: 10.1016/j.mayocp.2012.09.016 |
| [135] |
Ahmad T, Fiuzat M, Neely B, et al. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure. JACC Heart Fail. 2014;2(3):260–268. doi: 10.1016/j.jchf.2013.12.004 |
| [136] |
Ahmad T., Fiuzat M., Neely B., et al. Biomarkers of myocardial stress and fibrosis as predictors of mode of death in patients with chronic heart failure // JACC Heart Fail. 2014. Vol. 2, N 3. P. 260–268. doi: 10.1016/j.jchf.2013.12.004 |
| [137] |
Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ). doi: 10.26442/20751753.2021.10.201113 |
| [138] |
Алиева А.М., Пинчук Т.В., Воронкова К.В., и др. Неоптерин — биомаркер хронической сердечной недостаточности (обзор современной литературы) // Consilium Medicum. 2021. Т. 23, № 10. С. 756–759. doi: 10.26442/20751753.2021.10.201113 |
| [139] |
Alieva AM, Baykova IE, Khadzhieva NH, et al. Resistin and cardiovascular pathology. Therapy. 2021;7(9):137–147. (In Russ). doi: 10.18565/therapy.2021.9.137-147 |
| [140] |
Алиева А.М., Байкова И.Е., Хаджиева Н.Х., и др. Резистин и сердечно-сосудистая патология // Терапия. 2021. Т. 7, № 9. С. 137–147. doi: 10.18565/therapy.2021.9.137-147 |
Eco-Vector
/
| 〈 |
|
〉 |