Interleukin-18 and cardiovascular diseases: a literature review

Amina Magomedovna Alieva , Natalia V. Teplova , Vera V. Lyalina , Lidia M. Shnakhova , Rose A. Arakelyan , Elina A. Skripnichenko , Ramiz K. Valiev , Alik M. Rakhaev , Madina Ya. Shavaeva , Igor G. Nikitin

Russian Medicine ›› 2022, Vol. 28 ›› Issue (3) : 201 -214.

PDF
Russian Medicine ›› 2022, Vol. 28 ›› Issue (3) : 201 -214. DOI: 10.17816/medjrf109440
Reviews
review-article

Interleukin-18 and cardiovascular diseases: a literature review

Author information +
History +
PDF

Abstract

Cardiovascular disease is a serious problem of modern healthcare, which is one of the leading causes of general mortality, reduction and loss of ability to work, as well as disability. The search and the study of new cardiovascular biological markers can allow the optimization of the diagnosis of cardiovascular diseases, development of laboratory tools for assessing the effectiveness of a treatment, and improving the prediction of possible adverse clinical outcomes.

The purpose of this review was to promote the consideration of interleukin-18 (IL-18) as a diagnostic and prognostic marker in cardiovascular pathology. For the first time, K. Nakamura et al. in 1989, described IL-18 and interferon-gamma (IFN-γ-inducing factor, IFN-γ-inducing factor, IGIF) as a new, previously unknown factor that induces the production of IFN-γ. Data obtained from rodent models and clinical studies have demonstrated that IL-18 is involved in the pathogenesis of several diseases, immune-inflammatory rheumatic conditions, systemic vasculitis, cardiovascular diseases, malignancy, central nervous system pathologies, inflammatory bowel disease, psoriasis, and diseases of the kidneys and lungs. In animal models of acute myocardial infarction, pressure overload, and left ventricular dysfunction, IL-18 has been demonstrated to increase cardiomyocyte hypertrophy, induce cardiac contractile dysfunction, and extracellular matrix remodeling. It is therefore expected that further scientific and clinical studies can demonstrate the possibility of using IL-18 as an additional laboratory tool for the diagnosis, risk stratification, and prediction of cardiovascular events in patients with a cardiac profile. The effect of blockade of this cytokine on reducing morbidity and mortality in patients with cardiovascular diseases remains to be assessed for more detail, while considering reasonable economic costs and the side effects of drugs.

Keywords

cardiovascular diseases / biological markers / cytokine / interleukin-18 / interferon-γ

Cite this article

Download citation ▾
Amina Magomedovna Alieva, Natalia V. Teplova, Vera V. Lyalina, Lidia M. Shnakhova, Rose A. Arakelyan, Elina A. Skripnichenko, Ramiz K. Valiev, Alik M. Rakhaev, Madina Ya. Shavaeva, Igor G. Nikitin. Interleukin-18 and cardiovascular diseases: a literature review. Russian Medicine, 2022, 28(3): 201-214 DOI:10.17816/medjrf109440

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feng Y, Ye D, Wang Z, et al. The Role of Interleukin-6 Family Members in Cardiovascular Diseases. Front Cardiovasc Med. 2022; 9:818890. doi: 10.3389/fcvm.2022.818890

[2]

Feng Y., Ye D., Wang Z., et al. The Role of Interleukin-6 Family Members in Cardiovascular Diseases // Front Cardiovasc Med. 2022. Vol. 9. P. 818890. doi: 10.3389/fcvm.2022.818890

[3]

Roth GA, Johnson C, Abajobir A, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25. doi: 10.1016/j.jacc.2017.04.052

[4]

Roth G.A., Johnson C., Abajobir A., et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015 // J Am Coll Cardiol. 2017. Vol. 70, N 1. P. 1–25. doi: 10.1016/j.jacc.2017.04.052

[5]

Alieva AM, Reznik EV, Gasanova ET, et al. Clinical value of blood biomarkers in patients with chronic heart failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. (In Russ). doi: 10.20514/2226-6704-2018-8-5-333-345

[6]

Алиева А.М., Резник Е.В., Гасанова Э.Т., и др. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью // Архивъ внутренней медицины. 2018. Т. 8, № 5. С. 333–345. doi: 10.20514/2226-6704-2018-8-5-333-345

[7]

Aliyeva AM, Baykova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskii Arkhiv (Ter. Arkh.). 2019;91(9):145–149. (In Russ) doi: 10.26442/00403660.2019.09.00022

[8]

Алиева А.М., Байкова И.Е., Кисляков В.А., и др. Галектин-3: диагностическая и прогностическая ценность определения у пациентов с хронической сердечной недостаточностью // Терапевтический архив. 2019. Т. 91, № 9. С. 145–149. doi: 10.26442/00403660.2019.09.000226

[9]

Nakamura K, Okamura H, Wada M, et al. Endotoxininduced serum factor that stimulates gamma interferon production. Infect Immun.1989;57(2):590–595. doi: 10.1128/iai.57.2.590-595.1989

[10]

Nakamura K., Okamura H., Wada M., et al. Endotoxininduced serum factor that stimulates gamma interferon production // Infect Immun. 1989. Vol. 57, N 2. P. 590–595. doi: 10.1128/iai.57.2.590-595.1989

[11]

Okamura H, Nagata K, Komatsu T, et al. A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infect Immun.1995;63(10):3966–3972. doi: 10.1128/iai.63.10.3966-3972.1995

[12]

Okamura H., Nagata K., Komatsu T., et al. A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock // Infect Immun. 1995. Vol. 63, N 10. P. 3966–3972. doi: 10.1128/iai.63.10.3966-3972.1995

[13]

Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev. 2018;281(1):138–153. doi: 10.1111/imr.12616

[14]

Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis // Immunol Rev. 2018. Vol. 281, N 1. P. 138–153. doi: 10.1111/imr.12616

[15]

Kalina U, Ballas K, Koyama N, et al. Genomic organization and regulation of the human interleukin18 gene. Scand J Immunol. 2000;52(6):525–530. doi: 10.1046/j.1365-3083.2000.00836.x

[16]

Kalina U., Ballas K., Koyama N., et al. Genomic organization and regulation of the human interleukin18 gene // Scand J Immunol. 2000. Vol. 52, N 6. P. 525–530. doi: 10.1046/j.1365-3083.2000.00836.x

[17]

Gu Y, Kuida K, Tsutsui H, et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science. 1997;275(5297):206–209. doi: 10.1126/science.275.5297.206

[18]

Gu Y., Kuida K., Tsutsui H., et al. Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme // Science. 1997. Vol. 275, N 5297. P. 206–209. doi: 10.1126/science.275.5297.206

[19]

Heilig R, Dick MS, Sborgi L, et al. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur J Immunol. 2018;48(4):584–592. doi: 10.1002/eji.201747404

[20]

Heilig R., Dick M.S., Sborgi L., et al. The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice // Eur J Immunol. 2018. Vol. 48, N 4. P. 584–592. doi: 10.1002/eji.201747404

[21]

Weiss ES, Girard-Guyonvarc’h C, Holzinger D, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131(13):1442–1455. doi: 10.1182/blood-2017-12-820852

[22]

Weiss E.S., Girard-Guyonvarc’h C., Holzinger D., et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome // Blood. 2018. Vol. 131, N 13. P. 1442–1455. doi: 10.1182/blood-2017-12-820852

[23]

Niu J, Wu S, Chen M, et al. Hyperactivation of the NLRP3 inflammasome protects mice against influenza A virus infection via IL-1β mediated neutrophil recruitment. Cytokine. 2019;120:115–124. doi: 10.1016/j.cyto.2019.04.019

[24]

Niu J., Wu S., Chen M., et al. Hyperactivation of the NLRP3 inflammasome protects mice against influenza A virus infection via IL-1β mediated neutrophil recruitment // Cytokine. 2019. Vol. 120. P. 115–124. doi: 10.1016/j.cyto.2019.04.019

[25]

Oliveira AC, Gomes-Neto JF, Barbosa CD, et al. Crucial role for T cell-intrinsic IL-18R-MyD88 signaling in cognate immune response to intracellular parasite infection. ELife. 2017;6:e30883. doi: 10.7554/eLife.30883

[26]

Oliveira A.C., Gomes-Neto J.F., Barbosa C.D., et al. Crucial role for T cell-intrinsic IL-18R-MyD88 signaling in cognate immune response to intracellular parasite infection // ELife. 2017. Vol. 6. P. e30883. doi: 10.7554/eLife.30883

[27]

Nanda JD, Ho TS, Satria RD, et al. IL-18: The Forgotten Cytokine in Dengue Immunopathogenesis. J Immunol Res. 2021; 2021:8214656. doi: 10.1155/2021/8214656

[28]

Nanda J.D., Ho T.S., Satria R.D., et al. IL-18: The Forgotten Cytokine in Dengue Immunopathogenesis // J Immunol Res. 2021. Vol. 2021. P. 8214656. doi: 10.1155/2021/8214656

[29]

Rex DAB, Agarwal N, Prasad TSK, et al. A comprehensive pathway map of IL-18-mediated signalling. J Cell Commun Signal. 2020;14(2):257–266. doi: 10.1007/s12079-019-00544-4

[30]

Rex D.A.B., Agarwal N., Prasad T.S.K., et al. A comprehensive pathway map of IL-18-mediated signaling // J Cell Commun Signal. 2020. Vol. 14, N 2. P. 257–266. doi: 10.1007/s12079-019-00544-4

[31]

Yoshimoto T, Takeda K, Tanaka T, et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-γ production. J Immunol. 1998;161(7):3400–3407.

[32]

Yoshimoto T., Takeda K., Tanaka T., et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-γ production // J Immunol. 1998. Vol. 161, N 7. P. 3400–3407.

[33]

Hoshino T, Wiltrout RH, Young HA. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response. J Immunol. 1999;162(9):5070–5077.

[34]

Hoshino T., Wiltrout R.H., Young H.A. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response // J Immunol. 1999. Vol. 162, N 9. P. 5070–5077.

[35]

Chow JYS, Wong CK, Cheung PFY, Lam CWK. Intracellular signaling mechanisms regulating the activation of human eosinophils by the novel Th2 cytokine IL-33: implications for allergic inflammation. Cell Mol Immunol. 2010;7(1):26–34. doi: 10.1038/cmi.2009.106

[36]

Chow J.Y.S., Wong C.K., Cheung P.F.Y., Lam C.W.K. Intracellular signaling mechanisms regulating the activation of human eosinophils by the novel Th2 cytokine IL-33: implications for allergic inflammation // Cell Mol Immunol. 2010. Vol. 7, N 1. P. 26–34. doi: 10.1038/cmi.2009.106

[37]

Yoshimoto T, Mizutani H, Tsutsui H, Noben-Trauth N. IL-18 induction of IgE: dependence on CD4+ T cells, IL-4 and STAT6. Nat Immunol. 2000;1(2):132–137. doi: 10.1038/77811

[38]

Yoshimoto T., Mizutani H., Tsutsui H., Noben-Trauth N. IL-18 induction of IgE: dependence on CD4+ T cells, IL-4 and STAT6 // Nat Immunol. 2000. Vol. 1, N 2. P. 132–137. doi: 10.1038/77811

[39]

Nasonov EL, Avdeeva AS. Interleukin 18 in Immune-mediated rheumatic diseases and COVID-19. Rheumatology Science and Practice. 2022;60(2):195–204. (In Russ). doi: 10.47360/1995-4484-2022-195-204

[40]

Насонов Е.Л., Авдеева А.С. Интерлейкин 18 при иммуновоспалительных ревматических заболеваниях и COVID-19 // Научно-практическая ревматология. 2022. Т. 60, № 2. С. 195–204. doi: 10.47360/1995-4484-2022-195-204

[41]

Harel M, Fauteux-Daniel S, Girard-Guyonvarc’h C, Gabay C. Balance between interleukin-18 and interleukin-18 binding protein in auto-inflammatory diseases. Cytokine. 2022;150:155781. doi: 10.1016/j.cyto.2021.155781

[42]

Harel M., Fauteux-Daniel S., Girard-Guyonvarc’h C., Gabay C. Balance between interleukin-18 and interleukin-18 binding protein in auto-inflammatory diseases // Cytokine. 2022. Vol. 150. P. 155781. doi: 10.1016/j.cyto.2021.155781

[43]

Yasuda K, Nakanishi K, Tsutsui H. Interleukin-18 in health and disease. Int J Mol Sci. 2019;20(3):649. doi: 10.3390/ ijms20030649

[44]

Yasuda K., Nakanishi K., Tsutsui H. Interleukin-18 in health and disease // Int J Mol Sci. 2019. Vol. 20, N 3. P. 649. doi: 10.3390/ijms20030649

[45]

O'Brien LC, Mezzaroma E, Van Tassell BW, et al. Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure. Mol Med. 2014;20(1):221–229. doi: 10.2119/molmed.2014.00034

[46]

O'Brien L.C., Mezzaroma E., Van Tassell B.W., et al. Interleukin-18 as a therapeutic target in acute myocardial infarction and heart failure // Mol Med. 2014. Vol. 20, N 1. P. 221–229. doi: 10.2119/molmed.2014.00034

[47]

Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–1361. doi: 10.1038/nature08938

[48]

Duewell P., Kono H., Rayner K.J., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals // Nature. 2010. Vol. 464, N 7293. P. 1357–1361. doi: 10.1038/nature08938

[49]

Hoseini Z, Sepahvand F, Rashidi B, et al. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol. 2018;233(3):2116–2132. doi: 10.1002/jcp.25930

[50]

Hoseini Z., Sepahvand F., Rashidi B., et al. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis // J Cell Physiol. 2018. Vol. 233, N 3. P. 2116–2132. doi: 10.1002/jcp.25930

[51]

Mallat Z, Corbaz A, Scoazec A, et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation. 2001;104(14):1598–1603. doi: 10.1161/hc3901.096721

[52]

Mallat Z., Corbaz A., Scoazec A., et al. Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability // Circulation. 2001. Vol. 104, N 14. P. 1598–1603. doi: 10.1161/hc3901.096721

[53]

Mallat Z, Corbaz A, Scoazec A, et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res. 2001;89(7): E41–E45. doi: 10.1161/hh1901.098735

[54]

Mallat Z., Corbaz A., Scoazec A., et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability // Circ Res. 2001. Vol. 89, N 7. P. E41–E45. doi: 10.1161/hh1901.098735

[55]

Elhage R, Jawien J, Rudling M, et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res. 2003;59(1):234–240. doi: 10.1016/s0008-6363(03)00343-2

[56]

Elhage R., Jawien J., Rudling M., et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice // Cardiovasc Res. 2003. Vol. 59, N 1. P. 234–240. doi: 10.1016/s0008-6363(03)00343-2

[57]

Badimon L. Interleukin-18: A potent pro-inflammatory cytokine in atherosclerosis. Cardiovasc Res. 2012;96(2):172–175; discussion 176–180. doi: 10.1093/cvr/cvs226

[58]

Badimon L. Interleukin-18: A potent pro-inflammatory cytokine in atherosclerosis // Cardiovasc Res. 2012. Vol. 96, N 2. P. 172–175; discussion 176–180. doi: 10.1093/cvr/cvs226

[59]

Basiak M, Kosowski M, Hachula M, Okopien B. Plasma Concentrations of Cytokines in Patients with Combined Hyperlipidemia and Atherosclerotic Plaque before Treatment Initiation-A Pilot Study. Medicina (Kaunas). 2022;58(5):624. doi: 10.3390/medicina58050624

[60]

Basiak M., Kosowski M., Hachula M., Okopien B. Plasma Concentrations of Cytokines in Patients with Combined Hyperlipidemia and Atherosclerotic Plaque before Treatment Initiation-A Pilot Study // Medicina (Kaunas). 2022. Vol. 58, N 5. P. 624. doi: 10.3390/medicina58050624

[61]

Tang X. Analysis of interleukin-17 and interleukin-18 levels in animal models of atherosclerosis. Exp Ther Med. 2019;18(1):517–522. doi: 10.3892/etm.2019.7634

[62]

Tang X. Analysis of interleukin-17 and interleukin-18 levels in animal models of atherosclerosis // Exp Ther Med. 2019. Vol. 18, N 1. P. 517–522. doi: 10.3892/etm.2019.7634

[63]

Arapi B, Bayoğlu B, Cengiz M, et al. Increased Expression of Interleukin-18 mRNA is Associated with Carotid Artery Stenosis. Balkan Med J. 2018;35(3):250–255. doi: 10.4274/balkanmedj.2017.0323

[64]

Arapi B., Bayoğlu B., Cengiz M., et al.Increased Expression of Interleukin-18 mRNA is Associated with Carotid Artery Stenosis // Balkan Med J. 2018. Vol. 35, N 3. P. 250–255. doi: 10.4274/balkanmedj.2017.0323

[65]

Scherr C, Albuquerque DC, Pozzan R, et al. Role of Interleukin-18 and the Thrombus Precursor Protein in Coronary Artery Disease. Arq Bras Cardiol. 2020;114(4):692–698. doi: 10.36660/abc.20190176

[66]

Scherr C., Albuquerque D.C., Pozzan R., et al. Role of Interleukin-18 and the Thrombus Precursor Protein in Coronary Artery Disease // Arq Bras Cardiol. 2020. Vol. 114, N 4. P. 692–698. doi: 10.36660/abc.20190176

[67]

Sadeghi M, Gheraati M, Soleimani A, et al. Serum interleukin-18 and extent of coronary artery disease in unstable angina. ARYA Atheroscler. 2018;14(3):122–127. doi: 10.22122/arya. v14i3.1370

[68]

Sadeghi M., Gheraati M., Soleimani A., et al. Serum interleukin-18 and extent of coronary artery disease in unstable angina // ARYA Atheroscler. 2018. Vol. 14, N 3. P. 122–127. doi: 10.22122/arya.v14i3.1370

[69]

Sun H, Zhang J, Zheng Y, Shang S. Expressions and clinical significance of factors related to acute coronary syndrome. J Biol Regul Homeost Agents. 2018;32(2):299–305.

[70]

Sun H., Zhang J., Zheng Y., Shang S. Expressions and clinical significance of factors related to acute coronary syndrome // J Biol Regul Homeost Agents. 2018. Vol. 32, N 2. P. 299–305.

[71]

Åkerblom A, James SK, Lakic TG, et al. PLATO Investigators. Interleukin-18 in patients with acute coronary syndromes. Clin Cardiol. 2019;42(12):1202–1209. doi: 10.1002/clc.23274

[72]

Åkerblom A., James S.K., Lakic T.G., et al. PLATO Investigators. Interleukin-18 in patients with acute coronary syndromes // Clin Cardiol. 2019. Vol. 42, N 12. P. 1202–1209. doi: 10.1002/clc.23274

[73]

Ponasenko AV, Khutornaya MV, Malyshev IYu, Barbarash OL. Interleukin 18 levels in patients with stable coronary artery disease is associated with IL18RAP and IL18R1 gene polymorphism and the risk of myocardial infarction. Russian Journal of Cardiology. 2020;25(10):3977. (In Russ). doi: 10.15829/1560-4071-2020-3977

[74]

Понасенко А.В., Хуторная М.В., Малышев И.Ю., Барбараш О.Л. Концентрация интерлейкина-18 у пациентов со стабильной формой ишемической болезни сердца ассоциирована с полиморфизмом генов IL18RAP и IL18R1 и риском развития инфаркта миокарда // Российский кардиологический журнал. 2020. Т. 25, № 10. С. 3977. doi: 10.15829/1560-4071-2020-3977

[75]

Hoseini F, Mahmazi S, Mahmoodi K, et al. Evaluation of the Role of -137G/C Single Nucleotide Polymorphism (rs187238) and Gene Expression Levels of the IL-18 in Patients with Coronary Artery Disease. Oman Med J. 2018;33(2):118–125. doi: 10.5001/omj.2018.23

[76]

Hoseini F., Mahmazi S., Mahmoodi K., et al. Evaluation of the Role of -137G/C Single Nucleotide Polymorphism (rs187238) and Gene Expression Levels of the IL-18 in Patients with Coronary Artery Disease // Oman Med J. 2018. Vol. 33, N 2. P. 118–125. doi: 10.5001/omj.2018.23

[77]

Ridker PM, MacFadyen JG, Thuren T, Libby P. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis. Eur Heart J. 2020;41(23):2153–2163. doi: 10.1093/eurheartj/ehz542

[78]

Ridker P.M., MacFadyen J.G., Thuren T., Libby P. Residual inflammatory risk associated with interleukin-18 and interleukin-6 after successful interleukin-1β inhibition with canakinumab: further rationale for the development of targeted anti-cytokine therapies for the treatment of atherothrombosis // Eur Heart J. 2020. Vol. 41, N 23. P. 2153–2163. doi: 10.1093/eurheartj/ehz542

[79]

Korotaeva AA, Samoilova EV, Mindzaev DR, et al. Pro-inflammatory cytokines in chronic cardiac failure: state of problem. Terapevticheskii Arkhiv (Ter. Arkh.). 2021;93(11):1389–1394. (In Russ). doi: 10.26442/00403660.2021.11.201170

[80]

Коротаева А.А., Самойлова Е.В., Миндзаев Д.Р., и др. Провоспалительные цитокины при хронической сердечной недостаточности: состояние проблемы // Терапевтический архив. 2021. Т. 93, № 11. С. 1389–1394. doi: 10.26442/00403660.2021.11.201170

[81]

Hanna A, Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther. 2020;34(6):849–863. doi: 10.1007/s10557-020-07071-0

[82]

Hanna A., Frangogiannis N.G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure // Cardiovasc Drugs Ther. 2020. Vol. 34, N 6. P. 849–863. doi: 10.1007/s10557-020-07071-0

[83]

Mallat Z, Heymes C, Corbaz A, et al. Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure. FASEB J. 2004;18(14):1752–1754. doi: 10.1096/fj.04-2426fje

[84]

Mallat Z., Heymes C., Corbaz A., et al. Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure // FASEB J. 2004. Vol. 18, N 14. P. 1752–1754. doi: 10.1096/fj.04-2426fje

[85]

Di Somma S, Pittoni V, Raffa S, et al. IL-18 stimulates B-type natriuretic peptide synthesis by cardiomyocytes in vitro and its plasma levels correlate with B-type natriuretic peptide in non-overloaded acute heart failure patients. Eur Heart J Acute Cardiovasc Care. 2017;6(5):450–461. doi: 10.1177/2048872613499282

[86]

Di Somma S., Pittoni V., Raffa S., et al. IL-18 stimulates B-type natriuretic peptide synthesis by cardiomyocytes in vitro and its plasma levels correlate with B-type natriuretic peptide in non-overloaded acute heart failure patients // Eur Heart J Acute Cardiovasc Care. 2017. Vol. 6, N 5. P. 450–461. doi: 10.1177/2048872613499282

[87]

Sanchez I, Santana S, Escobar C, et al. Clinical implications of different biomarkers in elderly patients with heart failure. Biomark Med. 2014;8(4):535–541. doi: 10.2217/bmm.14.24

[88]

Sanchez I., Santana S., Escobar C., et al. Clinical implications of different biomarkers in elderly patients with heart failure // Biomark Med. 2014. Vol. 8, N 4. P. 535–541. doi: 10.2217/bmm.14.24

[89]

Ji CL, Nomi A, Li B, et al. Increased Plasma Soluble Fractalkine in Patients with Chronic Heart Failure and Its Clinical Significance. Int Heart J. 2019;60(3):701–707. doi: 10.1536/ihj.18-422

[90]

Ji C.L., Nomi A., Li B., et al. Increased Plasma Soluble Fractalkine in Patients with Chronic Heart Failure and Its Clinical Significance // Int Heart J. 2019. Vol. 60, N 3. P. 701–707. doi: 10.1536/ihj.18-422

[91]

Iravani Saadi M, Babaee Beigi MA, Ghavipishe M, et al. The circulating level of interleukins 6 and 18 in ischemic and idiopathic dilated cardiomyopathy. J Cardiovasc Thorac Res. 2019;11(2):132–137. doi: 10.15171/jcvtr.2019.23

[92]

Iravani Saadi M., Babaee Beigi M.A., Ghavipishe M., et al. The circulating level of interleukins 6 and 18 in ischemic and idiopathic dilated cardiomyopathy // J Cardiovasc Thorac Res. 2019. Vol. 11, N 2. P. 132–137. doi: 10.15171/jcvtr.2019.23

[93]

Yang YF, Liang YJ. Adenine decreases hypertrophic effects through interleukin-18 receptor. Chin J Physiol. 2019;62(4):139–147. doi: 10.4103/CJP.CJP_18_19

[94]

Yang Y.F., Liang Y.J. Adenine decreases hypertrophic effects through interleukin-18 receptor // Chin J Physiol. 2019. Vol. 62, N 4. P. 139–147. doi: 10.4103/CJP.CJP_18_19

[95]

Li X, Guo X, Chang Y, et al. Analysis of alterations of serum inflammatory cytokines and fibrosis makers in patients with essential hypertension and left ventricular hypertrophy and the risk factors. Am J Transl Res. 2022;14(6):4097–4103.

[96]

Li X., Guo X., Chang Y., et al. Analysis of alterations of serum inflammatory cytokines and fibrosis makers in patients with essential hypertension and left ventricular hypertrophy and the risk factors // Am J Transl Res. 2022. Vol. 14, N 6. P. 4097–4103.

[97]

Badawy A, Nigm DA, Ezzat GM, Gamal Y. Interleukin 18 as a new inflammatory mediator in left ventricular hypertrophy in children with end-stage renal disease. Saudi J Kidney Dis Transpl. 2020;31(6):1206–1216. doi: 10.4103/1319-2442.308329

[98]

Badawy A., Nigm D.A., Ezzat G.M., Gamal Y. Interleukin 18 as a new inflammatory mediator in left ventricular hypertrophy in children with end-stage renal disease // Saudi J Kidney Dis Transpl. 2020. Vol. 31, N 6. P. 1206–1216. doi: 10.4103/1319-2442.308329

[99]

Güntürk EE, Güntürk İ, Topuz AN, et al. Serum interleukin-18 levels are associated with non-dipping pattern in newly diagnosed hypertensive patients. Blood Press Monit. 2021;26(2):87–92. doi: 10.1097/MBP.0000000000000487

[100]

Güntürk E.E., Güntürk İ., Topuz A.N., et al. Serum interleukin-18 levels are associated with non-dipping pattern in newly diagnosed hypertensive patients // Blood Press Monit. 2021. Vol. 26, N 2. P. 87–92. doi: 10.1097/MBP.0000000000000487

[101]

Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc Natl Acad Sci USA. 2001;98(5):2871–2876. doi: 10.1073/pnas.041611398

[102]

Pomerantz B.J., Reznikov L.L., Harken A.H., Dinarello C.A. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta // Proc Natl Acad Sci USA. 2001. Vol. 98, N 5. P. 2871–2876. doi: 10.1073/pnas.041611398

[103]

Ni XQ, Hu ZY. Remifentanil improves myocardial ischemia-reperfusion injury in rats through inhibiting IL-18 signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(7):3915–3922. doi: 10.26355/eurrev_202004_20858

[104]

Ni X.Q., Hu Z.Y. Remifentanil improves myocardial ischemia-reperfusion injury in rats through inhibiting IL-18 signaling pathway // Eur Rev Med Pharmacol Sci. 2020. Vol. 24, N 7. P. 3915–3922. doi: 10.26355/eurrev_202004_20858

[105]

Venkatachalam K, Prabhu SD, Reddy VS, et al. Neutralization of interleukin-18 ameliorates ischemia/reperfusion-induced myocardial injury. J Biol Chem. 2009;284(12):7853–7865. doi: 10.1074/jbc.M808824200

[106]

Venkatachalam K., Prabhu S.D., Reddy V.S., et al. Neutralization of interleukin-18 ameliorates ischemia/reperfusion-induced myocardial injury // J Biol Chem. 2009. Vol. 284, N 12. P. 7853–7865. doi: 10.1074/jbc.M808824200

[107]

Gu H, Xie M, Xu L, et al. The protective role of interleukin-18 binding protein in a murine model of cardiac ischemia/reperfusion injury. Transpl Int. 2015;28(12):1436–1444. doi: 10.1111/tri.12683

[108]

Gu H., Xie M., Xu L., et al. The protective role of interleukin-18 binding protein in a murine model of cardiac ischemia/reperfusion injury // Transpl Int. 2015. Vol. 28, N 12. P. 1436–1444. doi: 10.1111/tri.12683

[109]

Suehiro C, Suzuki J, Hamaguchi M, et al. Deletion of interleukin-18 attenuates abdominal aortic aneurysm formation. Atherosclerosis. 2019;289:14–20. doi: 10.1016/j.atherosclerosis.2019.08.003

[110]

Suehiro C., Suzuki J., Hamaguchi M., et al. Deletion of interleukin-18 attenuates abdominal aortic aneurysm formation // Atherosclerosis. 2019. Vol. 289. P. 14–20. doi: 10.1016/j.atherosclerosis.2019.08.003

[111]

Hu H, Zhang G, Hu H, et al. Interleukin-18 Expression Increases in the Aorta and Plasma of Patients with Acute Aortic Dissection. Mediators Inflamm. 2019; 2019:8691294. doi: 10.1155/2019/869129

[112]

Hu H., Zhang G., Hu H., et al. Interleukin-18 Expression Increases in the Aorta and Plasma of Patients with Acute Aortic Dissection // Mediators Inflamm. 2019. Vol. 2019. P. 8691294. doi: 10.1155/2019/8691294

RIGHTS & PERMISSIONS

Alieva A.M., Teplova N.V., Lyalina V.V., Shnakhova L.M., Arakelyan R.A., Skripnichenko E.A., Valiev R.K., Rakhaev A.M., Shavaeva M.Y., Nikitin I.G.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/