Fibroblast growth factor 21 as a new tool in the multicomponent assessment of cardiovascular diseases

Amina M. Alieva , Irina E. Baikova , Elena V. Reznik , Ramiz K. Valiev , Islam Z. Akhmatov , Roza A. Arakelyan , Mukhammetsakhet N. Saryev , Igor G. Nikitin

Russian Medicine ›› 2022, Vol. 28 ›› Issue (1) : 75 -88.

PDF
Russian Medicine ›› 2022, Vol. 28 ›› Issue (1) : 75 -88. DOI: 10.17816/medjrf108900
Reviews
review-article

Fibroblast growth factor 21 as a new tool in the multicomponent assessment of cardiovascular diseases

Author information +
History +
PDF

Abstract

Currently, the search and study of new biological markers that can assist in the early diagnosis of cardiovascular diseases, serving as a laboratory tool for assessing the efficiency of ongoing therapy and being a prognostic criterion of possible clinical outcomes and a significant indicator in risk stratification, remain relevant. Two decades have passed since fibroblast growth factor 21 (FGF21), the 21st member of the FGF family, was identified and cloned. FGF21 is a secreted protein that acts as a metabolic regulator and participates in glucose homeostasis, ketogenesis, and regulation of insulin sensitivity. FGF21 expression is controlled by PPAR alpha receptor, which activates peroxisome proliferation. The liver is the main site of FGF21 production. Extrahepatic tissues such as white adipose tissue, brown adipose tissue, and skeletal muscle also express FGF21. Human FGF21 contains 209 amino acids, whereas the mouse counterpart has 210. Mouse and human FGF21 have 75% homology. Endocrine actions of FGF21 include enhancing glucose uptake by adipocytes of white adipose tissue via a unidirectional glucose transporter protein and activating the thermogenic function of brown adipose tissue. Furthermore, FGF21 has autocrine/paracrine effects, such as the induction of hepatic ketogenesis. FGF21 affects target cells with the participation of FGFR1 and FGFR4 receptors and beta-Klotho, a single-pass transmembrane protein that functions as an obligate cofactor of FGF21 signaling. Animal studies have clearly demonstrated that FGF21 acts directly on cardiac tissue, preventing the development of cardiac hypertrophy and reducing post-infarction damage and diabetic cardiomyopathy. Accumulating data emphasize the value of FGF21 as a new biological marker for diagnosis and prognosis assessment in patients with cardiac issues. Moreover, the role of FGF21 in heart diseases is very interesting because of its cardioprotective effects. Future large-scale prospective studies are necessary to confirm of the diagnostic, predictive, and possibly therapeutic role of this marker.

Keywords

biological marker / cardiovascular diseases / fibroblast growth factor 21 / myocardial infarction / heart failure

Cite this article

Download citation ▾
Amina M. Alieva, Irina E. Baikova, Elena V. Reznik, Ramiz K. Valiev, Islam Z. Akhmatov, Roza A. Arakelyan, Mukhammetsakhet N. Saryev, Igor G. Nikitin. Fibroblast growth factor 21 as a new tool in the multicomponent assessment of cardiovascular diseases. Russian Medicine, 2022, 28(1): 75-88 DOI:10.17816/medjrf108900

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lin W, Zhang T, Zhou Y, et al. Advances in Biological Functions and Clinical Studies of FGF21. Diabetes Metab Syndr Obes. 2021;14:3281-3290. doi: 10.2147/dmso.s317096

[2]

Lin W., Zhang T., Zhou Y., et al. Advances in Biological Functions and Clinical Studies of FGF21 // Diabetes Metab Syndr Obes. 2021. Vol. 14. P. 3281–3290. doi: 10.2147/dmso.s317096

[3]

Badman MK, Pissios P, Kennedy AR, et al. Hepatic Fibroblast Growth Factor 21 Is Regulated by PPARα and Is a Key Mediator of Hepatic Lipid Metabolism in Ketotic States. Cell Metab. 2007;5(6):426-437. doi: 10.1016/j.cmet.2007.05.002

[4]

Badman M.K., Pissios P., Kennedy A.R., et al. Hepatic Fibroblast Growth Factor 21 Is Regulated by PPARα and Is a Key Mediator of Hepatic Lipid Metabolism in Ketotic States // Cell Metab. 2007. Vol. 5, N 6. P. 426–437. doi: 10.1016/j.cmet.2007.05.002

[5]

Planavila A, Redondo-Angulo I, Villarroya F. FGF21 and Cardiac Physiopathology. Front Endocrinol (Lausanne). 2015;6. doi: 10.3389/fendo.2015.00133

[6]

Planavila A., Redondo-Angulo I., Villarroya F. FGF21 and Cardiac Physiopathology // Front Endocrinol (Lausanne). 2015. Vol. 6. doi: 10.3389/fendo.2015.00133

[7]

Kokkinos J, Tang S, Rye K-A, Ong KL. The role of fibroblast growth factor 21 in atherosclerosis. Atherosclerosis. 2017;257:259–265. doi: 10.1016/j.atherosclerosis.2016.11.033

[8]

Kokkinos J., Tang S., Rye K.-A., Ong K.L. The role of fibroblast growth factor 21 in atherosclerosis // Atherosclerosis. 2017. Vol. 257. P. 259–265. doi: 10.1016/j.atherosclerosis.2016.11.033

[9]

Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol. 2020;16(11):654–667. doi: 10.1038/s41574-020-0386-0

[10]

Geng L., Lam K.S.L., Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic // Nat Rev Endocrinol. 2020. Vol. 16, N 11. P. 654–667. doi: 10.1038/s41574-020-0386-0

[11]

Planavila A, Redondo I, Hondares E, et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun. 2013;4(1). doi: 10.1038/ncomms3019

[12]

Planavila A., Redondo I., Hondares E., et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice // Nat Commun. 2013. Vol. 4, N 1. P. doi: 10.1038/ncomms3019

[13]

Planavila A, Redondo-Angulo I, Ribas F, et al. Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc Res. 2015;106(1):19–31. doi: 10.1093/cvr/cvu263

[14]

Planavila A., Redondo-Angulo I., Ribas F., et al. Fibroblast growth factor 21 protects the heart from oxidative stress // Cardiovasc Res. 2015. Vol. 106, N 1. P. 19–31. doi: 10.1093/cvr/cvu263

[15]

Liu SQ, Roberts D, Kharitonenkov A, et al. Endocrine Protection of Ischemic Myocardium by FGF21 from the Liver and Adipose Tissue. Sci Rep. 2013;3(1). doi: 10.1038/srep02767

[16]

Liu S.Q., Roberts D., Kharitonenkov A., et al. Endocrine Protection of Ischemic Myocardium by FGF21 from the Liver and Adipose Tissue // Sci Rep. 2013. Vol. 3, N 1. P. doi: 10.1038/srep02767

[17]

Joki Y, Ohashi K, Yuasa D, et al. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochem Biophys Res Commun. 2015;459(1):124–130. doi: 10.1016/j.bbrc.2015.02.081

[18]

Joki Y., Ohashi K., Yuasa D., et al. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism // Biochem Biophys Res Commun. 2015. Vol. 459, N 1. P. 124–130. doi: 10.1016/j.bbrc.2015.02.081

[19]

Aubert G, Vega RB, Kelly DP. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. Biochim Biophys Acta. 2013;1833(4):840–847. doi: 10.1016/j.bbamcr.2012.08.015

[20]

Aubert G., Vega R.B., Kelly D.P. Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart // Biochim Biophys Acta. 2013. Vol. 1833, N 4. P. 840–847. doi: 10.1016/j.bbamcr.2012.08.015

[21]

Lehman JJ, Kelly DP. Transcriptional Activation Of Energy Metabolic Switches In The Developing And Hypertrophied Heart. Clin Exp Pharmacol Physiol. 2002;29(4):339-345. doi: 10.1046/j.1440-1681.2002.03655.x

[22]

Lehman J.J., Kelly D.P. Transcriptional Activation Of Energy Metabolic Switches In The Developing And Hypertrophied Heart // Clin Exp Pharmacol Physiol. 2002. Vol. 29, N 4. P. 339–345. doi: 10.1046/j.1440-1681.2002.03655.x

[23]

Schilling J, Lai L, Sambandam N, et al. Toll-Like Receptor-Mediated Inflammatory Signaling Reprograms Cardiac Energy Metabolism by Repressing Peroxisome Proliferator-Activated Receptor γ Coactivator-1 Signaling. Circu Heart Fail. 2011;4(4):474–482. doi: 10.1161/circheartfailure.110.959833

[24]

Schilling J., Lai L., Sambandam N., et al. Toll-Like Receptor-Mediated Inflammatory Signaling Reprograms Cardiac Energy Metabolism by Repressing Peroxisome Proliferator-Activated Receptor γ Coactivator-1 Signaling // Circ Heart Fail. 2011. Vol. 4, N 4. P. 474–482. doi: 10.1161/circheartfailure.110.959833

[25]

Álvarez-Guardia D, Palomer X, Coll T, et al. The p65 subunit of NF-κB binds to PGC-1α, linking inflammation and metabolic disturbances in cardiac cells. Cardiovasc Res. 2010;87(3):449–458. doi: 10.1093/cvr/cvq080

[26]

Álvarez-Guardia D., Palomer X., Coll T., et al. The p65 subunit of NF-κB binds to PGC-1α, linking inflammation and metabolic disturbances in cardiac cells // Cardiovasc Res. 2010. Vol. 87, N 3. P. 449–458. doi: 10.1093/cvr/cvq080

[27]

Stachowiak EK, Fang X, Myers J, et al. cAMP-induced differentiation of human neuronal progenitor cells is mediated by nuclear fibroblast growth factor receptor-1 (FGFR1). J Neurochem. 2003;84(6):1296–1312. doi: 10.1046/j.1471-4159.2003.01624.x

[28]

Stachowiak E.K., Fang X., Myers J., et al. cAMP-induced differentiation of human neuronal progenitor cells is mediated by nuclear fibroblast growth factor receptor-1 (FGFR1) // J Neurochem. 2003. Vol. 84, N 6. P. 1296–1312. doi: 10.1046/j.1471-4159.2003.01624.x

[29]

Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1 Cardiovasc Res. 2008;79(2):208–217. doi: 10.1093/cvr/cvn098

[30]

Ventura-Clapier R., Garnier A., Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1 // Cardiovasc Res. 2008. Vol. 79, N 2. P. 208–217. doi: 10.1093/cvr/cvn098

[31]

Eisele PS, Salatino S, Sobek J, et al. The Peroxisome Proliferator-activated Receptor γ Coactivator 1α/β (PGC-1) Coactivators Repress the Transcriptional Activity of NF-κB in Skeletal Muscle Cells. J Biol Chem. 2013;288(4):2246–2260. doi: 10.1074/jbc.M112.375253

[32]

Eisele P.S., Salatino S., Sobek J., et al. The Peroxisome Proliferator-activated Receptor γ Coactivator 1α/β (PGC-1) Coactivators Repress the Transcriptional Activity of NF-κB in Skeletal Muscle Cells // J Biol Chem. 2013. Vol. 288, N 4. P. 2246–2260. doi: 10.1074/jbc.M112.375253

[33]

Brahma MK, Adam RC, Pollak NM, et al. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis. J Lipid Res. 2014;55(11):2229–2241. doi: 10.1194/jlr.M044784

[34]

Brahma M.K., Adam R.C., Pollak N.M., et al. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis // J Lipid Res. 2014. Vol. 55, N 11. P. 2229–2241. doi: 10.1194/jlr.M044784

[35]

Gaich G, Chien Jenny Y, Fu H, et al. The Effects of LY2405319, an FGF21 Analog, in Obese Human Subjects with Type 2 Diabetes. Cell Metab. 2013;18(3):333–340. doi: 10.1016/j.cmet.2013.08.005

[36]

Gaich G., Chien Jenny Y., Fu H., et al. The Effects of LY2405319, an FGF21 Analog, in Obese Human Subjects with Type 2 Diabetes // Cell Metab. 2013. Vol. 18, N 3. P. 333–340. doi: 10.1016/j.cmet.2013.08.005

[37]

Keipert S, Lutter D, Schroeder BO, et al. Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice. Nat Commun. 2020;11(1). doi: 10.1038/s41467-019-14069-2

[38]

Keipert S., Lutter D., Schroeder B.O., et al. Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice // Nat Commun. 2020. Vol. 11, N 1. doi: 10.1038/s41467-019-14069-2

[39]

Villarroya J, Flachs P, Redondo-Angulo I, et al. Fibroblast Growth Factor-21 and the Beneficial Effects of Long-Chain n-3 Polyunsaturated Fatty Acids. Lipids. 2014;49(11):1081–1089. doi: 10.1007/s11745-014-3948-x

[40]

Villarroya J., Flachs P., Redondo-Angulo I., et al. Fibroblast Growth Factor-21 and the Beneficial Effects of Long-Chain n-3 Polyunsaturated Fatty Acids // Lipids. 2014. Vol. 49, N 11. P. 1081–1089. doi: 10.1007/s11745-014-3948-x

[41]

Gallego-Escuredo JM, Gómez-Ambrosi J, Catalan V, et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes (Lond). 2014;39(1):121–129. doi: 10.1038/ijo.2014.76

[42]

Gallego-Escuredo J.M., Gómez-Ambrosi J., Catalan V., et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients // Int J Obes (Lond). 2014. Vol. 39, N 1. P. 121–129. doi: 10.1038/ijo.2014.76

[43]

Villarroya F, Caelles C, Giralt M, et al. TNF-α Represses β-Klotho Expression and Impairs FGF21 Action in Adipose Cells: Involvement of JNK1 in the FGF21 Pathway. Endocrinology. 2012;153(9):4238–4245. doi: 10.1210/en.2012-1193

[44]

Villarroya F., Caelles C., Giralt M., et al. TNF-α Represses β-Klotho Expression and Impairs FGF21 Action in Adipose Cells: Involvement of JNK1 in the FGF21 Pathway // Endocrinology. 2012. Vol. 153, N 9. P. 4238–4245. doi: 10.1210/en.2012-1193

[45]

Hirsch E, Patel V, Adya R, et al. Novel Insights into the Cardio-Protective Effects of FGF21 in Lean and Obese Rat Hearts. PLoS One. 2014;9(2). doi: 10.1371/journal.pone.0087102

[46]

Hirsch E., Patel V., Adya R., et al. Novel Insights into the Cardio-Protective Effects of FGF21 in Lean and Obese Rat Hearts // PLoS One. 2014. Vol. 9, N 2. doi: 10.1371/journal.pone.0087102

[47]

Yan X, Chen J, Zhang C, et al. FGF 21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation. J Cell Mol Med. 2015;19(7):1557–1568. doi: 10.1111/jcmm.12530

[48]

Yan X., Chen J., Zhang C., et al. FGF 21 deletion exacerbates diabetic cardiomyopathy by aggravating cardiac lipid accumulation // J Cell Mol Med. 2015. Vol. 19, N 7. P. 1557-1568. doi: 10.1111/jcmm.12530

[49]

Zhang C, Huang Z, Gu J, et al. Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway. Diabetologia. 2015;58(8):1937–1948. doi: 10.1007/s00125-015-3630-8

[50]

Zhang C., Huang Z., Gu J., et al. Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway // Diabetologia. 2015. Vol. 58, N 8. P. 1937–1948. doi: 10.1007/s00125-015-3630-8

[51]

Liu SQ. Liver cell-mediated alleviation of acute ischemic myocardial injury. Front Biosci. 2010;E2(2):711–724. doi: 10.2741/e131

[52]

Liu S.Q. Liver cell-mediated alleviation of acute ischemic myocardial injury // Front Biosci (Elite Ed). 2010. Vol. E2, N 2. P. 711–724. doi: 10.2741/e131

[53]

Liu SQ, Tefft BJ, Roberts DT, et al. Cardioprotective proteins upregulated in the liver in response to experimental myocardial ischemia. Am J Physiol Heart Circ Physiol. 2012;303(12):H1446–H1458. doi: 10.1152/ajpheart.00362.2012

[54]

Liu S.Q., Tefft B.J., Roberts D.T., et al. Cardioprotective proteins upregulated in the liver in response to experimental myocardial ischemia // Am J Physiol Heart Circ Physiol. 2012. Vol. 303, N 12. P. H1446–H1458. doi: 10.1152/ajpheart.00362.2012

[55]

Kim KH, Jeong YT, Oh H, et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med. 2012;19(1):83–92. doi: 10.1038/nm.3014

[56]

Kim K.H., Jeong Y.T., Oh H., et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine // Nat Med. 2012. Vol. 19, N 1. P. 83–92. doi: 10.1038/nm.3014

[57]

Ribas F, Villarroya J, Hondares E, et al. FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J. 2014;463(2):191–199. doi: 10.1042/bj20140403

[58]

Ribas F., Villarroya J., Hondares E., et al. FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signalling // Biochem J. 2014. Vol. 463, N 2. P. 191–199. doi: 10.1042/bj20140403

[59]

Hojman P, Pedersen M, Nielsen AR, et al. Fibroblast Growth Factor-21 Is Induced in Human Skeletal Muscles by Hyperinsulinemia. Diabetes. 2009;58(12):2797–2801. doi: 10.2337/db09-0713

[60]

Hojman P., Pedersen M., Nielsen A.R., et al. Fibroblast Growth Factor-21 Is Induced in Human Skeletal Muscles by Hyperinsulinemia // Diabetes. 2009. Vol. 58, N 12. P. 2797–2801. doi: 10.2337/db09-0713

[61]

Tyynismaa H, Carroll CJ, Raimundo N, et al. Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet. 2010;19(20):3948–3958. doi: 10.1093/hmg/ddq310

[62]

Tyynismaa H., Carroll C.J., Raimundo N., et al. Mitochondrial myopathy induces a starvation-like response // Hum Mol Genet. 2010. Vol. 19, N 20. P. 3948–3958. doi: 10.1093/hmg/ddq310

[63]

Suomalainen A, Elo JM, Pietiläinen KH, et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011;10(9):806–818. doi: 10.1016/s1474-4422(11)70155-7

[64]

Suomalainen A., Elo J.M., Pietiläinen K.H., et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study // Lancet Neurol. 2011. Vol. 10, N 9. P. 806–818. doi: 10.1016/s1474-4422(11)70155-7

[65]

Dogan Sukru A, Pujol C, Maiti P, et al. Tissue-Specific Loss of DARS2 Activates Stress Responses Independently of Respiratory Chain Deficiency in the Heart. Cell Metab. 2014;19(3):458–469. doi: 10.1016/j.cmet.2014.02.004

[66]

Dogan Sukru A., Pujol C., Maiti P., et al. Tissue-Specific Loss of DARS2 Activates Stress Responses Independently of Respiratory Chain Deficiency in the Heart // Cell Metab. 2014. Vol. 19, N 3. P. 458-469. doi: 10.1016/j.cmet.2014.02.004

[67]

Di Lisa F, Itoh N. Cardiac Fgf21 synthesis and release: an autocrine loop for boosting up antioxidant defenses in failing hearts. Cardiovasc Res. 2015;106(1):1–3. doi: 10.1093/cvr/cvv050

[68]

Di Lisa F., Itoh N. Cardiac Fgf21 synthesis and release: an autocrine loop for boosting up antioxidant defenses in failing hearts // Cardiovasc Res. 2015. Vol. 106, N 1. P. 1–3. doi: 10.1093/cvr/cvv050

[69]

Redondo-Angulo I, Mas-Stachurska A, Sitges M, et al. Fgf21 is required for cardiac remodeling in pregnancy. Cardiovasc Res. 2017;113(13):1574–1584. doi: 10.1093/cvr/cvx088

[70]

Redondo-Angulo I., Mas-Stachurska A., Sitges M., et al. Fgf21 is required for cardiac remodeling in pregnancy // Cardiovasc Res. 2017. Vol. 113, N 13. P. 1574–1584. doi: 10.1093/cvr/cvx088

[71]

Cui Y, Giesy SL, Hassan M, et al. Hepatic FGF21 production is increased in late pregnancy in the mouse. Am J Physiol Regul Integr Comp Physiol. 2014;307(3):R290–R298. doi: 10.1152/ajpregu.00554.2013

[72]

Cui Y., Giesy S.L., Hassan M., et al. Hepatic FGF21 production is increased in late pregnancy in the mouse // Am J Physiol Regul Integr Comp Physiol. 2014. Vol. 307, N 3. P. R290–R298. doi: 10.1152/ajpregu.00554.2013

[73]

Redondo-Angulo I, Planavila A, Giralt M, Villarroya F. Involvement of fibroblast growth factor-21 in gestation-induced cardiac hypertrophy. Eur Heart J. 2014;35(suppl 1):513–850. doi: 10.1093/eurheartj/ehu324

[74]

Redondo-Angulo I., Planavila A., Giralt M., Villarroya F. Involvement of fibroblast growth factor-21 in gestation-induced cardiac hypertrophy // Eur Heart J. 2014. Vol. 35, N 1. P. 513–850. doi: 10.1093/eurheartj/ehu324

[75]

Li J, Li Y, Liu Y, et al. Fibroblast Growth Factor 21 Ameliorates NaV1.5 and Kir2.1 Channel Dysregulation in Human AC16 Cardiomyocytes. Front Pharmacol. 2021;12. doi: 10.3389/fphar.2021.715466

[76]

Li J., Li Y., Liu Y., et al. Fibroblast Growth Factor 21 Ameliorates NaV1.5 and Kir2.1 Channel Dysregulation in Human AC16 Cardiomyocytes // Front Pharmacol. 2021. Vol. 12. doi: 10.3389/fphar.2021.715466

[77]

Liu C, Schönke M, Zhou E, et al. Pharmacological treatment with FGF21 strongly improves plasma cholesterol metabolism to reduce atherosclerosis. Cardiovasc Res. 2022;118(2):489-502. doi: 10.1093/cvr/cvab076

[78]

Liu C., Schönke M., Zhou E., et al. Pharmacological treatment with FGF21 strongly improves plasma cholesterol metabolism to reduce atherosclerosis // Cardiovasc Res. 2022. Vol. 118, N 2. P. 489–502. doi: 10.1093/cvr/cvab076

[79]

Li J, Gong L, Zhang R, et al. Fibroblast growth factor 21 inhibited inflammation and fibrosis after myocardial infarction via EGR1. Eur J Pharmacol. 2021;910. doi: 10.1016/j.ejphar.2021.174470

[80]

Li J., Gong L., Zhang R., et al. Fibroblast growth factor 21 inhibited inflammation and fibrosis after myocardial infarction via EGR1 // Eur J Pharmacol. 2021. Vol. 910. doi: 10.1016/j.ejphar.2021.174470

[81]

Chen M, Zhong J, Wang Z, et al. Fibroblast Growth Factor 21 Protects Against Atrial Remodeling via Reducing Oxidative Stress. Fronti Cardiovasc Med. 2021;8. doi: 10.3389/fcvm.2021.720581

[82]

Сhen M., Zhong J., Wang Z., et al. Fibroblast Growth Factor 21 Protects Against Atrial Remodeling via Reducing Oxidative Stress // Front Cardiovasc Med. 2021. Vol. 8. doi: 10.3389/fcvm.2021.720581

[83]

Aleem M, Maqsood H, Younus S, et al. Fibroblast Growth Factor 21 and Its Association With Oxidative Stress and Lipid Profile in Type 2 Diabetes Mellitus. Cureus. 2021.13(9):e17723. doi: 10.7759/cureus.17723

[84]

Aleem M., Maqsood H., Younus S., et al. Fibroblast Growth Factor 21 and Its Association With Oxidative Stress and Lipid Profile in Type 2 Diabetes Mellitus // Cureus. 2021. Vol. 13, N 9. P. e17723. doi: 10.7759/cureus.17723

[85]

Lin W, Zhang T, Zhou Y, et al. Advances in Biological Functions and Clinical Studies of FGF21. Diabetes Metab Syndr Obes. 2021;14:3281–3290. doi: 10.2147/dmso.s317096

[86]

Lin W., Zhang T., Zhou Y., et al. Advances in Biological Functions and Clinical Studies of FGF21 // Diabetes Metab Syndr Obes. 2021. Vol. 14. P. 3281–3290. doi: 10.2147/dmso.s317096

[87]

Balboa-Vásquez J, Domínguez-Reyes A, Escandón-San Martín Y, et al. Relación del factor de crecimiento de fibroblastos 21 con indicadores de masa y función muscular en personas mayores con sobrepeso u obesidad. Estudio exploratorio. Rev Esp Geriatr Gerontol. 2021;56(2):81–86. doi: 10.1016/j.regg.2020.11.004

[88]

Balboa-Vásquez J., Domínguez-Reyes A., Escandón-San Martín Y., et al. Relación del factor de crecimiento de fibroblastos 21 con indicadores de masa y función muscular en personas mayores con sobrepeso u obesidad. Estudio exploratorio // Rev Esp Geriatr Gerontol. 2021. Vol. 56, N 2. P. 81–86. doi: 10.1016/j.regg.2020.11.004

[89]

Ren F, Huang J, Dai T, Gan F. Retrospective analysis of factors associated with serum levels of fibroblast growth factor-21 in patients with diabetes. Ann Palliat Med. 2021;10(3):3258–3266. doi: 10.21037/apm-21-525

[90]

Ren F., Huang J., Dai T., Gan F. Retrospective analysis of factors associated with serum levels of fibroblast growth factor-21 in patients with diabetes // Ann Palliat Med. 2021. Vol. 10, N 3. P. 3258–3266. doi: 10.21037/apm-21-525

[91]

Durnwald C, Mele L, Landon MB, et al. Fibroblast Growth Factor 21 and Metabolic Dysfunction in Women with a Prior Glucose-Intolerant Pregnancy. Am J Perinatol. 2020;38(13):1380–1385. doi: 10.1055/s-0040-1712966

[92]

Durnwald C., Mele L., Landon M.B., et al. Fibroblast Growth Factor 21 and Metabolic Dysfunction in Women with a Prior Glucose-Intolerant Pregnancy // Am J Perinatol. 2020. Vol. 38, N 13. P. 1380–1385. doi: 10.1055/s-0040-1712966

[93]

Huang S-Y, Wu D-A, Tsai J-P, Hsu B-G. Serum Levels of Fibroblast Growth Factor 21 Are Positively Associated with Aortic Stiffness in Patients with Type 2 Diabetes Mellitus. Int J Environ Res Public Health. 2021;18(7). doi: 10.3390/ijerph18073434

[94]

Huang S.-Y., Wu D.-A., Tsai J.-P., Hsu B.-G. Serum Levels of Fibroblast Growth Factor 21 Are Positively Associated with Aortic Stiffness in Patients with Type 2 Diabetes Mellitus // Int J Environ Res Public Health. 2021. Vol. 18, N 7. doi: 10.3390/ijerph18073434

[95]

Huang Z, Xu A, Cheung BMY. The Potential Role of Fibroblast Growth Factor 21 in Lipid Metabolism and Hypertension. Current Hypertension Reports. 2017;19(4). doi: 10.1007/s11906-017-0730-5

[96]

Huang Z., Xu A., Cheung B.M.Y. The Potential Role of Fibroblast Growth Factor 21 in Lipid Metabolism and Hypertension // Curr Hypertens Rep. 2017. Vol. 19, N 4. doi: 10.1007/s11906-017-0730-5

[97]

Zhang Y, Yan J, Yang N, et al. High-Level Serum Fibroblast Growth Factor 21 Concentration Is Closely Associated With an Increased Risk of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Front Cardiovasc Med. 2021;8. doi: 10.3389/fcvm.2021.705273

[98]

Zhang Y., Yan J., Yang N., et al. High-Level Serum Fibroblast Growth Factor 21 Concentration Is Closely Associated With an Increased Risk of Cardiovascular Diseases: A Systematic Review and Meta-Analysis // Front Cardiovasc Med. 2021. Vol. 8. doi: 10.3389/fcvm.2021.705273

[99]

Ong K-L, Januszewski AS, O’Connell R, et al. The relationship of fibroblast growth factor 21 with cardiovascular outcome events in the Fenofibrate Intervention and Event Lowering in Diabetes study. Diabetologia. 2014;58(3):464–473. doi: 10.1007/s00125-014-3458-7

[100]

Ong K.-L., Januszewski A.S., O’Connell R., et al. The relationship of fibroblast growth factor 21 with cardiovascular outcome events in the Fenofibrate Intervention and Event Lowering in Diabetes study // Diabetologia. 2014. Vol. 58, N 3. P. 464–473. doi: 10.1007/s00125-014-3458-7

[101]

Gan F, Huang J, Dai T, et al. Serum level of fibroblast growth factor 21 predicts long-term prognosis in patients with both diabetes mellitus and coronary artery calcification. Ann Palliat Med. 2020;9(2):368–374. doi: 10.21037/apm.2020.03.28

[102]

Gan F., Huang J., Dai T., et al. Serum level of fibroblast growth factor 21 predicts long-term prognosis in patients with both diabetes mellitus and coronary artery calcification // Ann Palliat Med. 2020. Vol. 9, N 2. P. 368–374. doi: 10.21037/apm.2020.03.28

[103]

Haberka M, Machnik G, Kowalówka A, et al. Epicardial, paracardial and perivascular fat quantity, genes expression and serum cytokines in coronary artery disease and diabetes. Pol Arch Intern Med. 2019. doi: 10.20452/pamw.14961

[104]

Haberka M., Machnik G., Kowalówka A., et al. Epicardial, paracardial and perivascular fat quantity, genes expression and serum cytokines in coronary artery disease and diabetes // Pol Arch Intern Med. 2019. doi: 10.20452/pamw.14961

[105]

Gu L, Jiang W, Zheng R, et al. Fibroblast Growth Factor 21 Correlates with the Prognosis of Dilated Cardiomyopathy. Cardiology. 2021;146(1):27–33. doi: 10.1159/000509239

[106]

Gu L., Jiang W., Zheng R., et al. Fibroblast Growth Factor 21 Correlates with the Prognosis of Dilated Cardiomyopathy // Cardiology. 2021. Vol. 146, N 1. P. 27–33. doi: 10.1159/000509239

[107]

Ianoș RD, Pop C, Iancu M, et al. Diagnostic Performance of Serum Biomarkers Fibroblast Growth Factor 21, Galectin-3 and Copeptin for Heart Failure with Preserved Ejection Fraction in a Sample of Patients with Type 2 Diabetes Mellitus. Diagnostics. 2021;11(9). doi: 10.3390/diagnostics11091577

[108]

Ianoș R.D., Pop C., Iancu M., et al. Diagnostic Performance of Serum Biomarkers Fibroblast Growth Factor 21, Galectin-3 and Copeptin for Heart Failure with Preserved Ejection Fraction in a Sample of Patients with Type 2 Diabetes Mellitus // Diagnostics. 2021. Vol. 11, N 9. P. doi: 10.3390/diagnostics11091577

[109]

Chou R-H, Huang P-H, Hsu C-Y, et al. Circulating Fibroblast Growth Factor 21 is Associated with Diastolic Dysfunction in Heart Failure Patients with Preserved Ejection Fraction. Sci Rep. 2016;6(1). doi: 10.1038/srep33953

[110]

Chou R.-H., Huang P.-H., Hsu C.-Y., et al. Circulating Fibroblast Growth Factor 21 is Associated with Diastolic Dysfunction in Heart Failure Patients with Preserved Ejection Fraction // Sci Rep. 2016. Vol. 6, N 1. P. doi: 10.1038/srep33953

[111]

Chen H, Lu N, Zheng M. A high circulating FGF21 level as a prognostic marker in patients with acute myocardial infarction. Am J Transl Res. 2018;10(9):2958-2966

[112]

Chen H., Lu N., Zheng M. A high circulating FGF21 level as a prognostic marker in patients with acute myocardial infarction // Am J Transl Res. 2018. Vol. 10, N 9. P. 2958-2966

[113]

Gu L, Jiang W, Qian H, et al. Elevated serum FGF21 predicts the major adverse cardiovascular events in STEMI patients after emergency percutaneous coronary intervention. PeerJ. 2021;9. doi: 10.7717/peerj.12235

[114]

Gu L., Jiang W., Qian H., et al. Elevated serum FGF21 predicts the major adverse cardiovascular events in STEMI patients after emergency percutaneous coronary intervention // PeerJ. 2021. Vol. 9, N P. doi: 10.7717/peerj.12235

[115]

Xu A, Zhang W, Chu S, et al. Serum Level of Fibroblast Growth Factor 21 Is Independently Associated with Acute Myocardial Infarction. PloS One. 2015;10(6). doi: 10.1371/journal.pone.0129791

[116]

Xu A., Zhang W., Chu S., et al. Serum Level of Fibroblast Growth Factor 21 is Independently Associated with Acute Myocardial Infarction // PloS One. 2015. Vol. 10, N 6. P. doi: 10.1371/journal.pone.0129791

[117]

Han X, Chen C, Cheng G, et al. Serum fibroblast growth factor 21 levels are increased in atrial fibrillation patients. Cytokine. 2015;73(1):176–180. doi: 10.1016/j.cyto.2015.02.019

[118]

Han X., Chen C., Cheng G., et al. Serum fibroblast growth factor 21 levels are increased in atrial fibrillation patients // Cytokine. 2015. Vol. 73, N 1. P. 176–180. doi: 10.1016/j.cyto.2015.02.019

[119]

Basurto L, Gregory MA, Hernández SB, et al. Monocyte chemoattractant protein-1 (MCP-1) and fibroblast growth factor-21 (FGF-21) as biomarkers of subclinical atherosclerosis in women. Exp Gerontol. 2019;124. doi: 10.1016/j.exger.2019.05.013

[120]

Basurto L., Gregory M.A., Hernández S.B., et al. Monocyte chemoattractant protein-1 (MCP-1) and fibroblast growth factor-21 (FGF-21) as biomarkers of subclinical atherosclerosis in women // Exp Gerontol. 2019. Vol. 124. doi: 10.1016/j.exger.2019.05.013

[121]

Proshai GA, Dudarenko SV, Partsernyak AS, et al. Fibroblast growth factor 21 from the perspective of a promising marker of metabolic disorders and premature aging in polymorbid cardiovascular pathology in young and middle-aged people. Emergency cardiology and cardiovascular risks. 2020;4(2):1002–1005. (In Russ).

[122]

Прощай Г.А, Дударенко С.В, Парцерняк А.С, и др. Фактор роста фибробластов 21 с позиции перспективного маркера метаболических нарушений и преждевременного старения при полиморбидной сердечно-сосудистой патологии у лиц молодого и среднего возраста // Неотложная кардиология и кардиооваскулярные риски. 2020. Т. 4, № 2. С. 1002–1005.

[123]

Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical Value of Blood Biomarkers in Patients with Chronic Heart Failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. doi: 10.20514/2226-6704-2018-8-5-333-345

[124]

Алиева А.М, Резник Е.В, Гасанова Э.Т., и др. Клиническое значение определения биомаркеров у больных с хронической сердечной недостаточностью // Архивъ внутренней медицины. 2018. Т. 8, № 5. С. 333–345. doi: 10.20514/2226-6704-2018-8-5-333-345

RIGHTS & PERMISSIONS

Alieva A.M., Baikova I.E., Reznik E.V., Valiev R.K., Akhmatov I.Z., Arakelyan R.A., Saryev M.N., Nikitin I.G.

AI Summary AI Mindmap
PDF

75

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/