Ghrelin as a promising biological marker in cardiovascular disease

Amina M. Alieva , Tatyana V. Pinchuk , Irina E. Baikova , Lidia M. Shnakhova , Kira V. Voronkova , Ramiz K. Valiev , Alik M. Rakhaev , Roza A. Arakelyan , Marina R. Kalova , Igor G. Nikitin

Russian Medicine ›› 2021, Vol. 27 ›› Issue (6) : 589 -600.

PDF
Russian Medicine ›› 2021, Vol. 27 ›› Issue (6) : 589 -600. DOI: 10.17816/0869-2106-2021-27-6-589-600
Reviews
review-article

Ghrelin as a promising biological marker in cardiovascular disease

Author information +
History +
PDF

Abstract

This review highlights the current literature data on the peptide hormone ghrelin. Ghrelin is a 28-amino-acid peptide, which is the only known peptide hormone modified with fatty acids. Ghrelin is a natural receptor ligand that stimulates the secretion of growth hormones. In addition to the stomach, ghrelin is expressed in many organs such as the duodenum, jejunum, ileum, colon, lungs, heart, pancreas, kidneys, testicles, pituitary gland, and hypothalamus. The main biological functions of this peptide include growth hormone secretion, appetite stimulation, modulation of gastric acid secretion and motility, and an increase in endocrine and exocrine pancreatic secretions. Reference intervals for ghrelin are 8.502–16.6 pg/mL. The studies analyzed have shown a strong relationship between ghrelin and cardiovascular system function. Studies have also described the cardioprotective effects of ghrelin. However, the molecular mechanisms underlying the effects of ghrelin on the heart are not fully understood. A further deeper understanding of the role of ghrelin and future clinical studies are necessary to determine the diagnostic, prognostic, and possibly therapeutic significance of this biomarker.

Keywords

review / biological markers / ghrelin / cardiovascular diseases / left ventricle / myocardial infarction / heart failure

Cite this article

Download citation ▾
Amina M. Alieva, Tatyana V. Pinchuk, Irina E. Baikova, Lidia M. Shnakhova, Kira V. Voronkova, Ramiz K. Valiev, Alik M. Rakhaev, Roza A. Arakelyan, Marina R. Kalova, Igor G. Nikitin. Ghrelin as a promising biological marker in cardiovascular disease. Russian Medicine, 2021, 27(6): 589-600 DOI:10.17816/0869-2106-2021-27-6-589-600

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–660. doi: 10.1038/45230

[2]

Kojima M., Hosoda H., Date Y., et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach // Nature. 1999. Vol. 402, N 6762. P. 656–660. doi: 10.1038/45230

[3]

Tokudome T, Otani K, Miyazato M, Kangawa K. Ghrelin and the heart. Peptides. 2019;111:42–46. doi: 10.1016/j.peptides.2018.05.006

[4]

Tokudome T., Otani K., Miyazato M., Kangawa K. Ghrelin and the heart // Peptides. 2019. Vol. 111, N. P. 42–46. doi: 10.1016/j.peptides.2018.05.006

[5]

Howard AD, Feighner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273(5277):974–977. doi: 10.1126/science.273.5277.974

[6]

Howard A.D., Feighner S.D., Cully D.F., et al. A receptor in pituitary and hypothalamus that functions in growth hormone release // Science. 1996. Vol. 273, N 5277. P. 974–977. doi: 10.1126/science.273.5277.974

[7]

Tokudome T, Kangawa K. Physiological significance of ghrelin in the cardiovascular system. Proc Jpn Acad Ser B Phys Biol Sci. 2019;95(8):459–467. doi: 10.2183/pjab.95.032

[8]

Tokudome T., Kangawa K. Physiological significance of ghrelin in the cardiovascular system // Proc Jpn Acad Ser B Phys Biol Sci. 2019. Vol. 95, N 8. P. 459–467. doi: 10.2183/pjab.95.032

[9]

Zhang JV, Ren PG, Avsian-Kretchmer O, et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake. Science. 2005;310(5750):996–999. doi: 10.1126/science.1117255

[10]

Zhang J.V., Ren P.G., Avsian-Kretchmer O., et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake // Science. 2005. Vol. 310, N 5750. P. 996–999. doi: 10.1126/science.1117255

[11]

Kim S, Nam Y, Shin SJ, et al. The Potential Roles of Ghrelin in Metabolic Syndrome and Secondary Symptoms of Alzheimer’s Disease. Front Neurosci. 2020;14:583097. doi: 10.3389/fnins.2020.583097

[12]

Kim S., Nam Y., Shin S.J., et al. The Potential Roles of Ghrelin in Metabolic Syndrome and Secondary Symptoms of Alzheimer’s Disease // Front Neurosci. 2020. Vol. 14, N. P. 583097. doi: 10.3389/fnins.2020.583097

[13]

Nunez-Salces M, Li H, Feinle-Bisset C, et al. The regulation of gastric ghrelin secretion. Acta Physiol (Oxf). 2021;231(3):e13588. doi: 10.1111/apha.13588

[14]

Nunez-Salces M., Li H., Feinle-Bisset C., et al. The regulation of gastric ghrelin secretion // Acta Physiol (Oxf). 2021. Vol. 231, N 3. P. e13588. doi: 10.1111/apha.13588

[15]

Bang AS, Soule SG, Yandle TG, et al. Characterisation of proghrelin peptides in mammalian tissue and plasma. J Endocrinol. 2007;192(2):313–323. doi: 10.1677/JOE-06-0021

[16]

Bang A.S., Soule S.G., Yandle T.G., et al. Characterisation of proghrelin peptides in mammalian tissue and plasma // J Endocrinol. 2007. Vol. 192, N 2. P. 313–323. doi: 10.1677/JOE-06-0021

[17]

Hosoda H, Kojima M, Matsuo H, Kangawa K. Purification and characterization of rat des-Gln14-Ghrelin, a second endogenous ligand for the growth hormone secretagogue receptor. J Biol Chem. 2000;275(29):21995–22000. doi: 10.1074/jbc.M002784200

[18]

Hosoda H., Kojima M., Matsuo H., Kangawa K. Purification and characterization of rat des-Gln14-Ghrelin, a second endogenous ligand for the growth hormone secretagogue receptor // J Biol Chem. 2000. Vol. 275, N 29. P. 21995–22000. doi: 10.1074/jbc.M002784200

[19]

Hopkins AL, Nelson TA, Guschina IA, et al. Unacylated ghrelin promotes adipogenesis in rodent bone marrow via ghrelin O-acyl transferase and GHS-R1a activity: evidence for target cell-induced acylation. Sci Rep. 2017;7:45541. doi: 10.1038/srep45541

[20]

Hopkins A.L., Nelson T.A., Guschina I.A., et al. Unacylated ghrelin promotes adipogenesis in rodent bone marrow via ghrelin O-acyl transferase and GHS-R1a activity: evidence for target cell-induced acylation // Sci Rep. 2017. Vol. 7, N. P. 45541. doi: 10.1038/srep45541

[21]

Yanagi S, Sato T, Kangawa K, Nakazato M. The Homeostatic Force of Ghrelin. Cell Metab. 2018;27(4):786–804. doi: 10.1016/j.cmet.2018.02.008

[22]

Yanagi S., Sato T., Kangawa K., Nakazato M. The Homeostatic Force of Ghrelin // Cell Metab. 2018. Vol. 27, N 4. P. 786–804. doi: 10.1016/j.cmet.2018.02.008

[23]

Tauber M, Coupaye M, Diene G, et al. Prader-Willi syndrome: A model for understanding the ghrelin system. J Neuroendocrinol. 2019;31(7):e12728. doi: 10.1111/jne.12728

[24]

Tauber M., Coupaye M., Diene G., et al. Prader-Willi syndrome: A model for understanding the ghrelin system // J Neuroendocrinol. 2019. Vol. 31, N 7. P. e12728. doi: 10.1111/jne.12728

[25]

Lv Y, Liang T, Wang G, Li Z. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Biosci Rep. 2018;38(5). doi: 10.1042/BSR20181061

[26]

Lv Y., Liang T., Wang G., Li Z. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism // Biosci Rep. 2018. Vol. 38, N 5. P. doi: 10.1042/BSR20181061

[27]

Sakata I, Takemi S. Ghrelin-cell physiology and role in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes. 2021;28(2):238–242. doi: 10.1097/MED.0000000000000610

[28]

Sakata I., Takemi S. Ghrelin-cell physiology and role in the gastrointestinal tract // Curr Opin Endocrinol Diabetes Obes. 2021. Vol. 28, N 2. P. 238–242. doi: 10.1097/MED.0000000000000610

[29]

Date Y, Kojima M, Hosoda H, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141(11):4255–4261. doi: 10.1210/endo.141.11.7757

[30]

Date Y., Kojima M., Hosoda H., et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans // Endocrinology. 2000. Vol. 141, N 11. P. 4255–4261. doi: 10.1210/endo.141.11.7757

[31]

Tichonenko EV, Tsoi UA, Vasilieva EY, Babenko AY. Characteristics of eating behavior and the level of hormones regulating the appetite in patients with type 2 diabetes mellitus and body mass index more than 35 kg /m2. Obesity and metabolism. 2018;15(1):30–38. (In Russ). doi: 10.14341/omet2018130-38

[32]

Тихоненко Е.В., Цой У.А., Васильева Е.Ю., Бабенко А.Ю. Характеристики пищевого поведения и уровень гормонов, регулирующих аппетит, у пациентов с сахарным диабетом 2 типа и индексом массы тела выше 35 кг/м2 // Ожирение и метаболизм. 2018. Т. 15, № 1. С. 30–38. doi: 10.14341/omet2018130-38

[33]

Lewinski A, Karbownik-Lewinska M, Wieczorek-Szukala K, et al. Contribution of Ghrelin to the Pathogenesis of Growth Hormone Deficiency. Int J Mol Sci. 2021;22(16). doi: 10.3390/ijms22169066

[34]

Lewinski A., Karbownik-Lewinska M., Wieczorek-Szukala K., et al. Contribution of Ghrelin to the Pathogenesis of Growth Hormone Deficiency // Int J Mol Sci. 2021. Vol. 22, N 16. P. doi: 10.3390/ijms22169066

[35]

Airapetov MI, Eresko SO, Lebedev AA, et al. [Expression of Ghrelin Receptor GHS-R1a in The Brain (Mini Review)]. Mol Biol (Mosk). 2021;55(4):578–584. doi: 10.31857/S0026898421040029

[36]

Airapetov M.I., Eresko S.O., Lebedev A.A., et al. Expression of Ghrelin Receptor GHS-R1a in The Brain (Mini Review) // Mol Biol (Mosk). 2021. Vol. 55, N 4. P. 578–584. doi: 10.31857/S0026898421040029

[37]

Xiao X, Bi M, Jiao Q, et al. A new understanding of GHSR1a –independent of ghrelin activation. Ageing Res Rev. 2020;64:101187. doi: 10.1016/j.arr.2020.101187

[38]

Xiao X., Bi M., Jiao Q., et al. A new understanding of GHSR1a – independent of ghrelin activation // Ageing Res Rev. 2020. Vol. 64, N. P. 101187. doi: 10.1016/j.arr.2020.101187

[39]

Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab. 2002;87(6):2988. doi: 10.1210/jcem.87.6.8739

[40]

Gnanapavan S., Kola B., Bustin S.A., et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans // J Clin Endocrinol Metab. 2002. Vol. 87, N 6. P. 2988. doi: 10.1210/jcem.87.6.8739

[41]

Gupta S, Mitra A. Heal the heart through gut (hormone) ghrelin: a potential player to combat heart failure. Heart Fail Rev. 2021;26(2):417–435. doi: 10.1007/s10741-020-10032-2

[42]

Gupta S., Mitra A. Heal the heart through gut (hormone) ghrelin: a potential player to combat heart failure // Heart Fail Rev. 2021. Vol. 26, N 2. P. 417–435. doi: 10.1007/s10741-020-10032-2

[43]

Belik EV, Gruzdeva OV, Dyleva YA, et al. Diagnosis of insulin resistance in patients at high cardiovascular risk: focus on peptide hormone ghrelin. Ateroscleroz. 2019;15(3):42–49. (In Russ). doi: 10.15372/ATER20190303

[44]

Белик Е.В., Груздева О.В., Дылева Ю.А., и др. Диагностика инсулинорезистентности у пациентов высокого-сердечно-сосудистого риска: фокус на пептидный гормон грелин // Атеросклероз. 2019. Т. 15, № 3. С. 42–49. doi: 10.15372/ATER20190303.

[45]

Matsumura K, Tsuchihashi T, Fujii K, et al. Central ghrelin modulates sympathetic activity in conscious rabbits. Hypertension. 2002;40(5):694–699. doi: 10.1161/01.hyp.0000035395.51441.10

[46]

Matsumura K., Tsuchihashi T., Fujii K., et al. Central ghrelin modulates sympathetic activity in conscious rabbits // Hypertension. 2002. Vol. 40, N 5. P. 694–699. doi: 10.1161/01.hyp.0000035395.51441.10

[47]

Mao Y, Tokudome T, Otani K, et al. Excessive sympathoactivation and deteriorated heart function after myocardial infarction in male ghrelin knockout mice. Endocrinology. 2013;154(5):1854–1863. doi: 10.1210/en.2012-2132

[48]

Mao Y., Tokudome T., Otani K., et al. Excessive sympathoactivation and deteriorated heart function after myocardial infarction in male ghrelin knockout mice // Endocrinology. 2013. Vol. 154, N 5. P. 1854–1863. doi: 10.1210/en.2012-2132

[49]

Mager U, Kolehmainen M, Lindstrom J, et al. Association between ghrelin gene variations and blood pressure in subjects with impaired glucose tolerance. Am J Hypertens. 2006;19(9):920–926. doi: 10.1016/j.amjhyper.2006.02.017

[50]

Mager U., Kolehmainen M., Lindstrom J., et al. Association between ghrelin gene variations and blood pressure in subjects with impaired glucose tolerance // Am J Hypertens. 2006. Vol. 19, N 9. P. 920–926. doi: 10.1016/j.amjhyper.2006.02.017

[51]

Sato T, Nakashima Y, Nakamura Y, et al. Continuous antagonism of the ghrelin receptor results in early induction of salt-sensitive hypertension. J Mol Neurosci. 2011;43(2):193–199. doi: 10.1007/s12031-010-9414-1

[52]

Sato T., Nakashima Y., Nakamura Y., et al. Continuous antagonism of the ghrelin receptor results in early induction of salt-sensitive hypertension // J Mol Neurosci. 2011. Vol. 43, N 2. P. 193–199. doi: 10.1007/s12031-010-9414-1

[53]

Yu AP, Ugwu FN, Tam BT, et al. Ghrelin Axis Reveals the Interacting Influence of Central Obesity and Hypertension. Front Endocrinol (Lausanne). 2018;9:534. doi: 10.3389/fendo.2018.00534

[54]

Yu A.P., Ugwu F.N., Tam B.T., et al. Ghrelin Axis Reveals the Interacting Influence of Central Obesity and Hypertension // Front Endocrinol (Lausanne). 2018. Vol. 9, N. P. 534. doi: 10.3389/fendo.2018.00534

[55]

Zhang M, Fang WY, Qu XK, et al. AMPK activity is down-regulated in endothelial cells of GHS-R(-/-) mice. Int J Clin Exp Pathol. 2013;6(9):1770–1780. PMC3759483

[56]

Zhang M., Fang W.Y., Qu X.K., et al. AMPK activity is down-regulated in endothelial cells of GHS-R(-/-) mice // Int J Clin Exp Pathol. 2013. Vol. 6, N 9. P. 1770–1780. PMC3759483

[57]

Virdis A, Duranti E, Colucci R, et al. Ghrelin restores nitric oxide availability in resistance circulation of essential hypertensive patients: role of NAD(P)H oxidase. Eur Heart J. 2015;36(43):3023–3030. doi: 10.1093/eurheartj/ehv365

[58]

Virdis A., Duranti E., Colucci R., et al. Ghrelin restores nitric oxide availability in resistance circulation of essential hypertensive patients: role of NAD(P)H oxidase // Eur Heart J. 2015. Vol. 36, N 43. P. 3023–3030. doi: 10.1093/eurheartj/ehv365

[59]

Yang D, Liu Z, Zhang H, Luo Q. Ghrelin protects human pulmonary artery endothelial cells against hypoxia-induced injury via PI3-kinase/Akt. Peptides. 2013;42:112–117. doi: 10.1016/j.peptides.2013.01.012

[60]

Yang D., Liu Z., Zhang H., Luo Q. Ghrelin protects human pulmonary artery endothelial cells against hypoxia-induced injury via PI3-kinase/Akt // Peptides. 2013. Vol. 42, N. P. 112–117. doi: 10.1016/j.peptides.2013.01.012

[61]

Yuan MJ, Li W, Zhong P. Research progress of ghrelin on cardiovascular disease. Biosci Rep. 2021;41(1). doi: 10.1042/BSR20203387

[62]

Yuan M.J., Li W., Zhong P. Research progress of ghrelin on cardiovascular disease // Biosci Rep. 2021. Vol. 41, N 1. P. doi: 10.1042/BSR20203387

[63]

Mao Y, Tokudome T, Otani K, et al. Ghrelin prevents incidence of malignant arrhythmia after acute myocardial infarction through vagal afferent nerves. Endocrinology. 2012;153(7):3426–3434. doi: 10.1210/en.2012–1065

[64]

Mao Y., Tokudome T., Otani K., et al. Ghrelin prevents incidence of malignant arrhythmia after acute myocardial infarction through vagal afferent nerves // Endocrinology. 2012. Vol. 153, N 7. P. 3426–3434. doi: 10.1210/en.2012-1065

[65]

Ma T, Su Y, Lu S, et al. Ghrelin expression and significance in 92 patients with atrial fibrillation. Anatol J Cardiol. 2017;18(2):99–102. doi: 10.14744/AnatolJCardiol.2017.7621

[66]

Ma T., Su Y., Lu S., et al. Ghrelin expression and significance in 92 patients with atrial fibrillation // Anatol J Cardiol. 2017. Vol. 18, N 2. P. 99–102. doi: 10.14744/AnatolJCardiol.2017.7621

[67]

Sax B, Merkely B, Turi K, et al. Characterization of pericardial and plasma ghrelin levels in patients with ischemic and non-ischemic heart disease. Regul Pept. 2013;186:131–136. doi: 10.1016/j.regpep.2013.08.003

[68]

Sax B., Merkely B., Turi K., et al. Characterization of pericardial and plasma ghrelin levels in patients with ischemic and non-ischemic heart disease // Regul Pept. 2013. Vol. 186, N. P. 131–136. doi: 10.1016/j.regpep.2013.08.003

[69]

Akboga MK, Tacoy G, Yilmaz Demirtas C, et al. As cardioprotective and angiogenic biomarker, can ghrelin predict coronary collateral development and severity of coronary atherosclerosis? Turk Kardiyol Dern Ars. 2017;45(4):316-323. doi: 10.5543/tkda.2017.96169

[70]

Akboga M.K., Tacoy G., Yilmaz Demirtas C., et al. [As cardioprotective and angiogenic biomarker, can ghrelin predict coronary collateral development and severity of coronary atherosclerosis?] // Turk Kardiyol Dern Ars. 2017. Vol. 45, N 4. P. 316–323. doi: 10.5543/tkda.2017.96169

[71]

Pearson JT, Collie N, Lamberts RR, et al. Ghrelin Preserves Ischemia-Induced Vasodilation of Male Rat Coronary Vessels Following beta-Adrenergic Receptor Blockade. Endocrinology. 2018;159(4):1763–1773. doi: 10.1210/en.2017-03070

[72]

Pearson J.T., Collie N., Lamberts R.R., et al. Ghrelin Preserves Ischemia-Induced Vasodilation of Male Rat Coronary Vessels Following beta-Adrenergic Receptor Blockade // Endocrinology. 2018. Vol. 159, N 4. P. 1763–1773. doi: 10.1210/en.2017-03070

[73]

Gruzdeva OV, Karetnikova VN, Akbasheva OЕ, et al. Lipid, Adipokine аnd Ghrelin Concentrations in Myocardial Infarction Patients with Insulin Resistance. Annals of the Russian Academy of Medical Sciences. 2013;68(7):13–19. (In Russ). doi: 10.15690/vramn.v68i7.706

[74]

Груздева О.В., Каретникова В.Н., Акбашева О.Е., и др. Содержание липидов, адипокинов и грелина при развитии инсулинорезистентности у пациентов с инфарктом миокарда // Вестник РАМН. 2013. № 7. С. 13–19. doi: 10.15690/vramn.v68i7.706

[75]

Raghay K, Akki R, Bensaid D, Errami M. Ghrelin as an anti-inflammatory and protective agent in ischemia/reperfusion injury. Peptides. 2020;124:170226. doi: 10.1016/j.peptides.2019.170226

[76]

Raghay K., Akki R., Bensaid D., Errami M. Ghrelin as an anti-inflammatory and protective agent in ischemia/reperfusion injury // Peptides. 2020. Vol. 124, N. P. 170226. doi: 10.1016/j.peptides.2019.170226

[77]

Gao M, Yang J, Liu G, et al. Ghrelin promotes the differentiation of human embryonic stem cells in infarcted cardiac microenvironment. Peptides. 2012;34(2):373–379. doi: 10.1016/j.peptides.2012.02.006

[78]

Gao M., Yang J., Liu G., et al. Ghrelin promotes the differentiation of human embryonic stem cells in infarcted cardiac microenvironment // Peptides. 2012. Vol. 34, N 2. P. 373–379. doi: 10.1016/j.peptides.2012.02.006

[79]

Matsumoto M, Yasuda S, Miyazaki S, et al. Decreased serum ghrelin levels in patients with acute myocardial infarction. Tohoku J. Exp Med. 2013;231(3):235–242. doi: 10.1620/tjem.231.235

[80]

Matsumoto M., Yasuda S., Miyazaki S., et al. Decreased serum ghrelin levels in patients with acute myocardial infarction // Tohoku J. Exp Med. 2013. Vol. 231, N 3. P. 235–242. doi: 10.1620/tjem.231.235

[81]

Sullivan R, McGirr R, Hu S, et al. Changes in the Cardiac GHSR1a-Ghrelin System Correlate With Myocardial Dysfunction in Diabetic Cardiomyopathy in Mice. J Endocr Soc. 2018;2(2):178–189. doi: 10.1210/js.2017-00433

[82]

Sullivan R., McGirr R., Hu S., et al. Changes in the Cardiac GHSR1a-Ghrelin System Correlate With Myocardial Dysfunction in Diabetic Cardiomyopathy in Mice // J Endocr Soc. 2018. Vol. 2, N 2. P. 178–189. doi: 10.1210/js.2017-00433

[83]

Yang C, Liu J, Liu K, et al. Ghrelin suppresses cardiac fibrosis of post-myocardial infarction heart failure rats by adjusting the activin A-follistatin imbalance. Peptides. 2018;99:27–35. doi: 10.1016/j.peptides.2017.10.018

[84]

Yang C., Liu J., Liu K., et al. Ghrelin suppresses cardiac fibrosis of post-myocardial infarction heart failure rats by adjusting the activin A-follistatin imbalance // Peptides. 2018. Vol. 99, N. P. 27–35. doi: 10.1016/j.peptides.2017.10.018

[85]

Wang M, Qian L, Li J, et al. GHSR deficiency exacerbates cardiac fibrosis: role in macrophage inflammasome activation and myofibroblast differentiation. Cardiovasc Res. 2020;116(13):2091–2102. doi: 10.1093/cvr/cvz318

[86]

Wang M., Qian L., Li J., et al. GHSR deficiency exacerbates cardiac fibrosis: role in macrophage inflammasome activation and myofibroblast differentiation // Cardiovasc Res. 2020. Vol. 116, N 13. P. 2091–2102. doi: 10.1093/cvr/cvz318

[87]

Eid RA, Alkhateeb MA, Eleawa S, et al. Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling. Basic Res Cardiol. 2018;113(2):13. doi: 10.1007/s00395-018-0671-4

[88]

Eid R.A., Alkhateeb M.A., Eleawa S., et al. Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling // Basic Res Cardiol. 2018. Vol. 113, N 2. P. 13. doi: 10.1007/s00395-018-0671-4

[89]

Yuan MJ, Wang T. The new mechanism of Ghrelin/GHSR-1a on autophagy regulation. Peptides. 2020;126:170264. doi: 10.1016/j.peptides.2020.170264

[90]

Yuan M.J., Wang T. The new mechanism of Ghrelin/GHSR-1a on autophagy regulation // Peptides. 2020. Vol. 126, N. P. 170264. doi: 10.1016/j.peptides.2020.170264

[91]

Sullivan R, Randhawa VK, Stokes A, et al. Dynamics of the Ghrelin/Growth Hormone Secretagogue Receptor System in the Human Heart Before and After Cardiac Transplantation. J Endocr Soc. 2019;3(4):748–762. doi: 10.1210/js.2018-00393

[92]

Sullivan R., Randhawa V.K., Stokes A., et al. Dynamics of the Ghrelin/Growth Hormone Secretagogue Receptor System in the Human Heart Before and After Cardiac Transplantation // J Endocr Soc. 2019. Vol. 3, N 4. P. 748–762. doi: 10.1210/js.2018-00393

[93]

Aleksova A, Beltrami AP, Bevilacqua E, et al. Ghrelin Derangements in Idiopathic Dilated Cardiomyopathy: Impact of Myocardial Disease Duration and Left Ventricular Ejection Fraction. J Clin Med. 2019;8(8). doi: 10.3390/jcm8081152

[94]

Aleksova A., Beltrami A.P., Bevilacqua E., et al. Ghrelin Derangements in Idiopathic Dilated Cardiomyopathy: Impact of Myocardial Disease Duration and Left Ventricular Ejection Fraction // J Clin Med. 2019. Vol. 8, N 8. P. doi: 10.3390/jcm8081152

[95]

Elhadidy MG, Elmasry A, Rabei MR, Eladel AE. Effect of ghrelin on VEGF-B and connexin-43 in a rat model of doxorubicin-induced cardiomyopathy. J Basic Clin Physiol Pharmacol. 2019;31(1). doi: 10.1515/jbcpp-2018-0212

[96]

Elhadidy M.G., Elmasry A., Rabei M.R., Eladel A.E. Effect of ghrelin on VEGF-B and connexin-43 in a rat model of doxorubicin-induced cardiomyopathy // J Basic Clin Physiol Pharmacol. 2019. Vol. 31, N 1. P. doi: 10.1515/jbcpp-2018-0212

[97]

Sullivan R, Randhawa VK, Lalonde T, et al. Regional Differences in the Ghrelin-Growth Hormone Secretagogue Receptor Signalling System in Human Heart Disease. CJC Open. 2021;3(2):182–194. doi: 10.1016/j.cjco.2020.10.015

[98]

Sullivan R., Randhawa V.K., Lalonde T., et al. Regional Differences in the Ghrelin-Growth Hormone Secretagogue Receptor Signalling System in Human Heart Disease // CJC Open. 2021. Vol. 3, N 2. P. 182–194. doi: 10.1016/j.cjco.2020.10.015

[99]

Yuan Y, Huang F, Deng C, Zhu P. The Additional Prognostic Value of Ghrelin for Mortality and Readmission in Elderly Patients with Acute Heart Failure. Clin Interv Aging. 2020;15:1353–1363. doi: 10.2147/CIA.S259889

[100]

Yuan Y., Huang F., Deng C., Zhu P. The Additional Prognostic Value of Ghrelin for Mortality and Readmission in Elderly Patients with Acute Heart Failure // Clin Interv Aging. 2020. Vol. 15, N. P. 1353–1363. doi: 10.2147/CIA.S259889

[101]

Chen Y, Zhou S, Zhang A, et al. Temporal changes and prognostic value of plasma ghrelin level in patients with acute heart failure: a prospective study. Heart Vessels. 2022;37(3):419–425. doi: 10.1007/s00380-021-01935-7

[102]

Chen Y., Zhou S., Zhang A., et al. Temporal changes and prognostic value of plasma ghrelin level in patients with acute heart failure: a prospective study // Heart Vessels. 2022. Vol. 37, N 3. P. 419–425. doi: 10.1007/s00380-021-01935-7

[103]

Aliyeva AM, Reznik EV, Hasanova ET, et al. Clinical Value of Blood Biomarkers in Patients with Chronic Heart Failure. The Russian Archives of Internal Medicine. 2018;8(5):333–345. (In Russ). doi: 10.20514/2226-6704-2018-8-5-333-345

[104]

Алиева А.М., Резник Е.В., Гасанова Э.Т., и др. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью // Архивъ внутренней медицины. 2018. Т. 8, № 5. С. 333–345. doi: 10.20514/2226-6704-2018-8-5-333-345

[105]

Aliyevа AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine (Russian Journal). 2020;98(3):203–209. (In Russ). doi: 10.30629/0023-2149-2020-98-3-203-209

[106]

Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний // Клиническая медицина. 2020. Т. 98, № 3. С. 203–209. doi: 10.30629/0023-2149-2020-98-3-203-209

[107]

Alieva AM, Almazova II, Pinchuk TV, et al. Fractalkin and cardiovascular disease. Consilium Medicum. 2020;22(5):83–86. (In Russ). doi: 10.26442/20751753.2020.5.200186

[108]

Алиева А.М., Алмазова И.И., Пинчук Т.В., и др. Фракталкин и сердечно-сосудистые заболевания // Consilium Medicum. 2020. Т. 22, № 5. С. 83–86. doi: 10.26442/20751753.2020.5.200186

[109]

Alieva AM, Pinchuk TV, Batov MA, et al. Sindecan-1 and cardiovascular diseases. Therapy. 2021;(8):121–128. (In Russ). doi: https://dx.doi.org/10.18565/therapy.2021.8.121-128.

[110]

Алиева А.М., Пинчук Т.В., Батов М.А., и др. Синдекан-1 и сердечно-сосудистые заболевания // Терапия. 2021. № 8. С. 121–128. doi: 10.18565/therapy.2021.8.121–128.

[111]

Alieva AM, Pinchuk TV, Almazova II, et al. Сlinical value of blood biomarker ST2 in patients with chronic heart failure. Consilium Medicum. 2021;23(6):522–526. (In Russ). doi: 10.26442/20751753.2021.6.200606

[112]

Алиева А.М., Пинчук Т.В., Алмазова И.И., и др. Клиническое значение определения биомаркера крови ST2 у больных с хронической сердечной недостаточностью // Consilium Medicum. 2021. Т. 23, № 6. С. 522–526.

[113]

Aliyeva AM, Baykova IE, Kislyakov VA, et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskii arkhiv. 2019;91(9):145–149. (In Russ). doi: 10.26442/00403660.2019.09.000226

[114]

Алиева А.М., Байкова И.Е., Кисляков В.А., и др. Галектин-3: диагностическая и прогностическая ценность определения у пациентов с хронической сердечной недостаточностью // Терапевтический архив. 2019. Т. 91, № 9. С. 145–149.

[115]

Gruzdeva OV, Borodkina DA, Belik EV, et al. Ghrelin Physiology and Pathophysiology: Focus on the Cardiovascular System. Kardiologiia. 2019;59(3):60–67. (In Russ). doi: 10.18087/cardio.2019.3.10220

[116]

Груздева О.В., Бородкина Д.А., Белик Е.В., и др. Грелин –физиология и патофизиология: в центре внимания сердечно-сосудистая система // Кардиология. 2019. Т. 59, № 3. С. 60–67. doi: 10.18087/cardio.2019.3.10220

RIGHTS & PERMISSIONS

Alieva A.M., Pinchuk T.V., Baikova I.E., Shnakhova L.M., Voronkova K.V., Valiev R.K., Rakhaev A.M., Arakelyan R.A., Kalova M.R., Nikitin I.G.

AI Summary AI Mindmap
PDF

69

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/