Parkinson’s disease: epidemiology and pathogenesis

Denis A. Borozdenko , Vladislava I. Bogorodova , Nina M. Kiseleva , Vadim V. Negrebetsky

Russian Medicine ›› 2021, Vol. 27 ›› Issue (2) : 183 -194.

PDF
Russian Medicine ›› 2021, Vol. 27 ›› Issue (2) : 183 -194. DOI: 10.17816/0869-2106-2021-27-2-183-194
Reviews
review-article

Parkinson’s disease: epidemiology and pathogenesis

Author information +
History +
PDF

Abstract

This review presents data on the etiology, epidemiology, and pathogenesis of Parkinson’s disease from National Center for Biotechnology Information (NCBI), eLibrary, CyberLeninka, and from monographs and textbooks. The prevalence, classification, genetic variability, main pathogenetic links, and potential disease development mechanisms are described. Both classic Parkinson’s disease and variable manifestations of parkinsonism are considered. The factors that contribute to disease progression and inhibit its development are described. The main hypotheses of the pathogenetic mechanisms of Parkinson’s disease are presented. These are protein misfolding, mitochondrial dysfunction, impaired protein purification systems, neuroinflammation, and pathology of the gut-brain axis.

Keywords

Parkinson’s disease / drug-induced parkinsonism / Lewy bodies / neuroinflammation / neurodegeneration

Cite this article

Download citation ▾
Denis A. Borozdenko, Vladislava I. Bogorodova, Nina M. Kiseleva, Vadim V. Negrebetsky. Parkinson’s disease: epidemiology and pathogenesis. Russian Medicine, 2021, 27(2): 183-194 DOI:10.17816/0869-2106-2021-27-2-183-194

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Neurology. 2017;16(11):877-897.

[2]

Feigin V.L, Nichols E., Alam T., et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015 // Lancet Neurol. 2017. Vol. 16, N 11. P. 877–897.

[3]

Razdorskaya VV, Voskresenskaya ON, Yudina GK. Parkinson’s disease in Russia: prevalence and incidence. Saratov Journal of Medical Scientific Research. 2016;12(3):379–384. (In Russ).

[4]

Раздорская В.В., Воскресенская О.Н., Юдина Г.К. Болезнь Паркинсона в России: распространенность и заболеваемость // Саратовский научно-медицинский журнал. 2016. Т. 12, № 3. С. 379–384.

[5]

Golubev VL. Atypical parkinsonism. Medical Аdvice. 2015;(10): 45-49. (in Russ)

[6]

Голубев В.Л. Атипичный паркинсонизм // Медицинский Совет. 2015. № 10. С. 45–49.

[7]

Kumar V, Abbas AK, Aster JC. Robbins. Pathologic Basis of Disease. 9th Edition. United States: Saunders; 2015.

[8]

Kumar V., Abbas A.K., Aster J.C. Robbins. Pathologic Basis of Disease. 9th Edition. United States: Saunders, 2015.

[9]

Vaughan CL, Goetz CG. Progressive Supranuclear Palsy. In: Encyclopedia of the Neurological Sciences. 2014:987–988. doi: 10.1016/B978-0-12-385157-4.00031-2

[10]

Vaughan C.L., Goetz C.G. Progressive Supranuclear Palsy. In: RB Daroff, MJ Aminoff, editors. Encyclopedia of the Neurological Sciences. 2014. P. 987–988. doi: 10.1016/B978-0-12-385157-4.00031-2

[11]

Saranza GM, Whitwell JL, Kovacs GG, Lang AE. Corticobasal degeneration. Int Rev Neurobiol. 2019;149:87–136. doi: 10.1016/bs.irn.2019.10.014

[12]

Saranza G.M., Whitwell J.L., Kovacs G.G., Lang A.E. Corticobasal degeneration // Int Rev Neurobiol. 2019. Vol. 149. P. 87–136. doi: 10.1016/bs.irn.2019.10.014

[13]

Fanciulli A, Stankovic I, Krismer F, et al. Multiple system atrophy. International Review of Neurobiology. 2019;149:137–192.

[14]

Fanciulli A., Stankovic I., Krismer F. et al. Multiple system atrophy // International review of neurobiology. 2019. N 149. P. 137–192.

[15]

Walker Z, Possin KL, Boeve BF, Aarsland D. Lewy body dementias. The Lancet. 2015;386:1683–1697.

[16]

Walker Z., Possin K.L., Boeve B.F., Aarsland D. Lewy body dementias // Lancet. 2015. N 386. P. 1683–1697. doi: 10.1016/S0140-6736(15)00462-6

[17]

Sanford AM. Lewy Body Dementia. Clin Geriatr Med. 2018;34(4):603–615. doi: 10.1016/j.cger.2018.06.007

[18]

Sanford A.M. Lewy Body Dementia // Clin Geriatr Med. 2018. Vol. 34, N 4. P. 603–615. doi: 10.1016/j.cger.2018.06.007

[19]

Brudek T. Inflammatory Bowel Diseases and Parkinson's Disease. J Parkinsons Dis. 2019;9:S331–S344. doi: 10.3233/JPD-191729

[20]

Brudek T. Inflammatory Bowel Diseases and Parkinson’s Disease // J Parkinsons Dis. 2019. Vol. 9, N s2. P. S331–S344. doi: 10.3233/JPD-191729

[21]

Levin OS, Fedorova NV. Parkinson’s disease. Moscow: MEDpress-inform; 2019. (In Russ).

[22]

Левин О.С., Федорова Н.В. Болезнь Паркинсона. М.: МЕДпресс-информ, 2019.

[23]

Yakhno NN, Shtul'mana DR. Diseases of the nervous system. Moscow: Medicine; 2001. (In Russ).

[24]

Яхно Н.Н., Штульман Д.Р. Болезни нервной системы. М.: Медицина, 2001.

[25]

Wirdefeldt K, Weibull CE, Chen H, et al. Parkinson’s disease and cancer: A register-based family study. American Journal of Epidemiology. 2014;179(1):85–94. doi: 10.1093/aje/kwt232

[26]

Wirdefeldt K., Weibull C.E., Chen H., et al. Parkinson's disease and cancer: A register-based family study // Am J Epidemiol. 2014. Vol. 179, N 1. P. 85–94. doi: 10.1093/aje/kwt232

[27]

Hu G, Jousilahti P, Nissinen A, et al. Body mass index and the risk of Parkinson disease. Neurology. 2006;67:1955–1959. doi: 10.1212/01.wnl.0000247052.18422.e5

[28]

Hu G., Jousilahti P., Nissinen A., et al. Body mass index and the risk of Parkinson disease // Neurology. 2006. Vol. 67, N 11. P. 1955–1959. doi: 10.1212/01.wnl.0000247052.18422.e5

[29]

Abbott RD, Ross GW, White LR, et al. Midlife adiposity and the future risk of Parkinson's disease. Neurology. 2002;59(7):1051–1057. doi: 10.1212/wnl.59.7.1051

[30]

Abbott R.D., Ross G.W., White L.R., et al. Midlife adiposity and the future risk of Parkinson’s disease // Neurology. 2002. Vol. 59, N 7. P. 1051–1057. doi: 10.1212/wnl.59.7.1051

[31]

Kim SC, Liu J, Solomon DH. Risk of incident diabetes in patients with gout: a cohort study. Arthritis & Rheumatology. 2015;67(1):273–280. doi: 10.1002/art.38918

[32]

Kim S.C., Liu J., Solomon D.H. Risk of incident diabetes in patients with gout: a cohort study // Arthritis Rheumatol. 2015. Vol. 67, N 1. P. 273–280. doi: 10.1002/art.38918.

[33]

Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. The New England Journal of Medicine. 2004;350(7):664–671. doi: 10.1056/NEJMoa031314

[34]

Petersen K.F., Dufour S., Befroy D., et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes // N Engl J Med. 2004. Vol. 350, N 7. P. 664–671. doi: 10.1056/NEJMoa031314.

[35]

Eriksson AK, Löfving S, Callaghan RC, Allebeck P. Alcohol use disorders and risk of Parkinson’s disease: findings from a Swedish national cohort study 1972–2008. BMC Neurology. 2013;13(1):1–6.

[36]

Eriksson A.K., Lofving S., Callaghan R.C., Allebeck P. Alcohol use disorders and risk of Parkinson's disease: findings from a Swedish national cohort study 1972–2008 // BMC Neurol. 2013. Vol. 13. P. 190. doi: 10.1186/1471-2377-13-190.

[37]

Zhang D, Jiang H, Xie J. Alcohol intake and risk of Parkinson’s disease: A meta-analysis of observational studies. Movement Disorders: Official Journal of the Movement Disorder Society. 2014;29(6):819–822.

[38]

Zhang D., Jiang H., Xie J. Alcohol intake and risk of Parkinson's disease: a meta-analysis of observational studies // Mov Disord. 2014. Vol. 29, N 6. P. 819–822. doi: 10.1002/mds.25863.

[39]

Curtin K, Fleckenstein AE, Robison RJ, et al. Methamphetamine/amphetamine abuse and risk of Parkinson's disease in Utah: a population-based assessment. Drug and Alcohol Dependence. 2015;146:30–38. doi: 10.1016/j.drugalcdep.2014.10.027

[40]

Curtin K., Fleckenstein A.E., Robison R.J., et al. Methamphetamine/amphetamine abuse and risk of Parkinson's disease in Utah: a population-based assessment // Drug and Alcohol Dependence. 2015. Vol. 146. P. 30–38. doi: 10.1016/j.drugalcdep.2014.10.027

[41]

Ascherio A, Schwarzschild MA. The epidemiology of Parkinson's disease: risk factors and prevention. The Lancet Neurology. 2016;15:1257–1272. doi: 10.1016/S1474-4422(16)30230-7

[42]

Ascherio A., Schwarzschild M.A. The epidemiology of Parkinson's disease: risk factors and prevention // The Lancet Neurology. 2016. Vol. 15, N 12. P. 1257–1272. doi: 10.1016/S1474-4422(16)30230-7

[43]

Choi HK, Atkinson K, Karlson EW, et al. Purine-rich foods, dairy and protein intake, and the risk of gout in men. New England Journal of Medicine. 2004;350:1093–1103. doi: 10.1056/NEJMoa035700

[44]

Choi H.K., Atkinson K., Karlson E.W., et al. Purine-rich foods, dairy and protein intake, and the risk of gout in men // New England Journal of Medicine. 2004. Vol. 350, N 11. P. 1093–1103. doi: 10.1056/NEJMoa035700

[45]

Tanner CM, Kamel F, Ross GW, et al. Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives. 2011;119:866–872. doi: 10.1289/ehp.1002839

[46]

Tanner C.M., Kamel F., Ross G.W., et al. Rotenone, paraquat, and Parkinson’s disease // Environmental Health Perspectives. 2011. Vol. 119, N 6. P. 866–872. doi: 10.1289/ehp.1002839

[47]

Marras C, Hincapié CA, Kristman VL, et al. Systematic review of the risk of Parkinson's disease after mild traumatic brain injury: results of the International Collaboration on Mild Traumatic Brain Injury Prognosis. Archives of Physical Medicine and Rehabilitation. 2014;95:S238–44. doi: 10.1016/j.apmr.2013.08.298

[48]

Marras C., Hincapié C.A., Kristman V.L., et al. Systematic review of the risk of Parkinson's disease after mild traumatic brain injury: results of the International Collaboration on Mild Traumatic Brain Injury Prognosis // Archives of Physical Medicine and Rehabilitation. 2014. Vol. 95, N 3. P. S238–S244. doi: 10.1016/j.apmr.2013.08.298

[49]

Quik M, O’Neill M, Perez XA. Nicotine neuroprotection against nigrostriatal damage: importance of the animal model. Trends in Pharmacological Sciences. 2007;28:229–235. doi: 10.1016/j.tips.2007.03.001

[50]

Quik M., O’Neill M., Perez X.A. Nicotine neuroprotection against nigrostriatal damage: importance of the animal model // Trends in Pharmacological Sciences. 2007. Vol. 28, N 5. P. 229–235. doi: 10.1016/j.tips.2007.03.001

[51]

Trinh K, Andrews L, Krause J, et al. Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson's disease through an NRF2-dependent mechanism. Journal of Neuroscience. 2010;30(16):5525–5532. doi: 10.1523/JNEUROSCI.4777-09.2010

[52]

Trinh K., Andrews L., Krause J., et al. Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson's disease through an NRF2-dependent mechanism // Journal of Neuroscience. 2010. Vol. 30, N 16. P. 5525–5532. doi: 10.1523/JNEUROSCI.4777-09.2010

[53]

Postuma RB, Lang AE, Munhoz RP, et al. Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology. 2012;79(7):651–658. doi: 10.1212/WNL.0b013e318263570d

[54]

Postuma R.B., Lang A.E., Munhoz R.P., et al. Caffeine for treatment of Parkinson disease: a randomized controlled trial // Neurology. 2012. Vol. 79, N 7. P. 651–658. doi: 10.1212/WNL.0b013e318263570d

[55]

Chen H, Zhang SM, Hernán MA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Archives of Neurology. 2003;60(8):1059–1064. doi: 10.1001/archneur.60.8.1059

[56]

Chen H., Zhang S.M., Hernán M.A., et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease // Archives of Neurology. 2003. Vol. 60, N. 8. P. 1059–1064. doi: 10.1001/archneur.60.8.1059

[57]

Phillips MC, Murtagh DK, Gilbertson LJ, et al. Low-fat versus ketogenic diet in Parkinson's disease: A pilot randomized controlled trial. Movement Disorders. 2018;33(8):1306–1314. doi: 10.1002/mds.27390

[58]

Phillips M.C., Murtagh D.K., Gilbertson L.J., et al. Low-fat versus ketogenic diet in Parkinson's disease: A pilot randomized controlled trial // Movement Disorders. 2018. Vol. 33, N 8. P. 1306–1314. doi: 10.1002/mds.27390

[59]

DL Nelson, AL Lehninger, MM Cox. Principles of Biochemistry, 7th Edition. North American Edition. 2017:430–436.

[60]

Nelson D.L., Lehninger A.L., Cox M.M. Principles of Biochemistry, 7th Edition // North American Edition. 2017. P. 430–436.

[61]

Kouli A, Torsney KM, Kuan WL. Parkinson’s disease: etiology, neuropathology, and pathogenesis. Exon Publications. 2018:3–26. doi: 10.17305/bjbms.2020.5181

[62]

Kouli A., Torsney K.M., Kuan W.L. Parkinson’s disease: etiology, neuropathology, and pathogenesis // Exon Publications. 2018. P. 3–26. doi: 10.17305/bjbms.2020.5181

[63]

Vickers NJ. Animal communication: when i’m calling you, will you answer too? Current Biology. 2017;27(14):R713–R715. doi: 10.1016/j.cub.2017.05.064

[64]

Vickers N.J. Animal communication: when i’m calling you, will you answer too? // Current Biology. 2017. Vol. 27, N 14. P. R713–R715. doi: 10.1016/j.cub.2017.05.064

[65]

Devi L, Raghavendran V, Prabhu BM, et al. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. Journal of Biological Chemistry. 2008;283(14):9089–9100. doi: 10.1074/jbc.M710012200

[66]

Devi L., Raghavendran V., Prabhu B.M., et al. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain // Journal of Biological Chemistry. 2008. Vol. 283, N 14. P. 9089–9100. doi: 10.1074/jbc.M710012200

[67]

Luth ES, Stavrovskaya IG, Bartels T, et al. Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. Journal of Biological Chemistry. 2014;289(31):21490–21507. doi: 10.1074/jbc.M113.545749

[68]

Luth E.S., Stavrovskaya I.G., Bartels T., et al. Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction // Journal of Biological Chemistry. 2014. Vol. 289, N 31. P. 21490–21507. doi: 10.1074/jbc.M113.545749

[69]

Briston T, Amy R Hicks. Mitochondrial dysfunction and neurodegenerative proteinopathies: mechanisms and prospects for therapeutic intervention. Biochemical Society Transactions. 2018;46(4):829–842. doi: 10.1042/BST20180025

[70]

Briston T., Hicks A.R. Mitochondrial dysfunction and neurodegenerative proteinopathies: mechanisms and prospects for therapeutic intervention // Biochemical Society Transactions. 2018. Vol. 46, N 4. P. 829–842. doi: 10.1042/BST20180025

[71]

Bender A, Krishnan KJ, Morris CW et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genetics. 2006;38:515–517. doi: 10.1038/ng1769

[72]

Bender A., Krishnan K.J., Morris C.M., et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease // Nature Genetics. 2006. Vol. 38, N 5. P. 515–517. doi: 10.1038/ng1769

[73]

Reeve AK, Grady JP, Cosgrave EM, et al. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease. NPJ Parkinson's Disease. 2018;4:9. doi: 10.1038/s41531-018-0044-6

[74]

Reeve A.K., Grady J.P., Cosgrave E.M., et al. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease // NPJ Parkinson’s Disease. 2018. Vol. 4, N 1. P. 9. doi: 10.1038/s41531-018-0044-6

[75]

Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain. 2008;131:1969–1978. doi: 10.1093/brain/awm318

[76]

Pan T., Kondo S., Le W., Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease // Brain. 2008. Vol. 131, N 8. P. 1969–1978. doi: 10.1093/brain/awm318

[77]

Seth AK, Barrett AB, Barnett L. Granger causality analysis in neuroscience and neuroimaging. Journal of Neuroscience. 2015;35(8):3293–3297. doi: 10.1523/JNEUROSCI.4399-14.2015

[78]

Seth A.K., Barrett A.B., Barnett L. Granger causality analysis in neuroscience and neuroimaging // Journal of Neuroscience. 2015. Vol. 35, N 8. P. 3293–3297. doi: 10.1523/JNEUROSCI.4399-14.2015

[79]

McKinnon C, Tabrizi SJ. The ubiquitin-proteasome system in neurodegeneration. Antioxidants & Redox Signaling. 2014;21(17):2302–2321. doi: 10.1089/ars.2013.5802

[80]

McKinnon C., Tabrizi S.J. The ubiquitin-proteasome system in neurodegeneration // Antioxidants & Redox Signaling. 2014. Vol. 21, N 17. P. 2302–2321. doi: 10.1089/ars.2013.5802

[81]

McNaught KS, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neuroscience Letters. 2001;297(3):191–194. doi: 10.1016/S0304-3940(00)01701-8

[82]

McNaught K.S., Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson's disease // Neuroscience Letters. 2001. Vol. 297, N 3. P. 191–194. doi: 10.1016/S0304-3940(00)01701-8

[83]

Nishikawa K, Li H, Kawamura R, et al. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochemical and Biophysical Research Communications. 2003;304(1):176–183. doi: 10.1016/S0006-291X(03)00555-2

[84]

Nishikawa K., Li H., Kawamura R., et al. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants // Biochemical and Biophysical Research Communications. 2003. Vol. 304, N 1. P. 176–183. doi: 10.1016/S0006-291X(03)00555-2

[85]

Zeng BY, Iravani MM, Lin ST, et al. MPTP treatment of common marmosets impairs proteasomal enzyme activity and decreases expression of structural and regulatory elements of the 26S proteasome. European Journal of Neuroscience. 2006;23(7):1766–1774. doi: 10.1111/j.1460-9568.2006.04718.x

[86]

Zeng B.Y., Iravani M.M., Lin S.T., et al. MPTP treatment of common marmosets impairs proteasomal enzyme activity and decreases expression of structural and regulatory elements of the 26S proteasome // European Journal of Neuroscience. 2006. Vol. 23, N 7. P. 1766–1774. doi: 10.1111/j.1460-9568.2006.04718.x

[87]

Bedford L, Hay D, Devoy A, et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. Journal of Neuroscience. 2008;28(33):8189–8198. doi: 10.1523/JNEUROSCI.2218-08.2008

[88]

Bedford L., Hay D., Devoy A., et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies // Journal of Neuroscience. 2008. Vol. 28, N 33. P. 8189–8198. doi: 10.1523/JNEUROSCI.2218-08.2008

[89]

Tanji K, Mori F, Kakita A, et al. Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiology of Disease. 2011.43(3):690–697. doi: 10.1016/j.nbd.2011.05.022. Available from: https://pubmed.ncbi.nlm.nih.gov/21684337/

[90]

Tanji K., Mori F., Kakita A., et al. Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease // Neurobiol Dis. 2011. Vol. 43, N 3. P. 690–697. doi: 10.1016/j.nbd.2011.05.022.

[91]

Williams DR, Hadeed A, al Din AS, et al. Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Movement Disorders: Official Journal of the Movement Disorder Society. 2005;20(10):1264–1271. doi: 10.1002/mds.20511

[92]

Williams D.R., Hadeed A., al-Din A.S., et al. Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia // Movement Disorders: Official Journal of the Movement Disorder Society. 2005. Vol. 20, N 10. P. 1264–1271. doi: 10.1002/mds.20511

[93]

Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron. 2015;85(2):257–273. doi: 10.1016/j.neuron.2014.12.007

[94]

Pickrell A.M., Youle R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease // Neuron. 2015. Vol. 85, N 2. P. 257–273. doi: 10.1016/j.neuron.2014.12.007

[95]

Liu B, Gao HM, Hong JS. Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environmental Health Perspectives. 2003;111(8):1065–1073. doi: 10.1289/ehp.6361

[96]

Liu B., Gao H.M., Hong J.S. Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation // Environmental Health Perspectives. 2003. Vol. 111, N 8. P. 1065–1073. doi: 10.1289/ehp.6361

[97]

Benkler M, Agmon-Levin N, Hassin-Baer S, et al. Immunology, autoimmunity, and autoantibodies in Parkinson’s disease. Clinical Reviews in Allergy & Immunology. 2012;42(2):164–171. doi: 10.1007/s12016-010-8242-y

[98]

Benkler M., Agmon-Levin N., Hassin-Baer S., et al. Immunology, autoimmunity, and autoantibodies in Parkinson’s disease // Clinical Reviews in Allergy & Immunology. 2012. Vol. 42, N 2. P. 164–171. doi: 10.1007/s12016-010-8242-y

[99]

Double KL, Rowe DB, Carew-Jones FM, et al. Anti-melanin antibodies are increased in sera in Parkinson's disease. Experimental Neurology. 2009;217(2):297–301. doi: 10.1016/j.expneurol.2009.03.002

[100]

Double K.L., Rowe D.B., Carew-Jones F.M., et al. Anti-melanin antibodies are increased in sera in Parkinson's disease // Experimental Neurology. 2009. Vol. 217, N 2. P. 297–301. doi: 10.1016/j.expneurol.2009.03.002

[101]

Papachroni KK, Ninkina N, Papapanagiotou A, et al. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. Journal of Neurochemistry. 2007;101(3):749–756. doi: 10.1111/j.1471-4159.2006.04365.x

[102]

Papachroni K.K., Ninkina N., Papapanagiotou A., et al. Autoantibodies to alpha-synuclein in inherited Parkinson’s disease // Journal of Neurochemistry. 2007. Vol. 101, N 3. P. 749–756. doi: 10.1111/j.1471-4159.2006.04365.x

[103]

Hunot S, Dugas N, Faucheux B, et al. FcεRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-α in glial cells. Journal of Neuroscience. 1999;19(9):3440-7. doi: 10.1523/JNEUROSCI.19-09-03440

[104]

Hunot S., Dugas N., Faucheux B., et al. FcεRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-α in glial cells // Journal of Neuroscience. 1999. Vol. 19, N 9. P. 3440–3447. doi: 10.1523/JNEUROSCI.19-09-03440

[105]

Loeffler DA, Camp DM, Conant SB. Complement activation in the Parkinson's disease substantia nigra: an immunocytochemical study. Journal of Neuroinflammation. 2006;3(1):1–8. doi: 10.1186/1742-2094-3-29

[106]

Loeffler D.A., Camp D.M., Conant S.B. Complement activation in the Parkinson's disease substantia nigra: an immunocytochemical study // Journal of Neuroinflammation. 2006. Vol. 3, N 1. P. 1–8. doi: 10.1186/1742-2094-3-29

[107]

Hirsch EC, Hunot S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? The Lancet Neurology. 2009;8(4):382–397. doi: 10.1038/npp.2012.255

[108]

Hirsch E.C., Hunot S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? // The Lancet Neurology. 2009. Vol. 8, N 4. P. 382–397.

[109]

Edison P, Ahmed I, Fan Z, et al. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia. Neuropsychopharmacology. 2013;38(6):938–949.

[110]

Edison P., Ahmed I., Fan Z., et al. Microglia, amyloid, and glucose metabolism in Parkinson’s disease with and without dementia // Neuropsychopharmacology. 2013. Vol. 38, N 6. P. 938–949. doi: 10.1038/npp.2012.255

[111]

Gao X, Chen H, Schwarzschild MA, Ascherio A. Use of ibuprofen and risk of Parkinson disease. Neurology. 2011;76(10):863–869. doi: 10.1212/WNL.0b013e31820f2d79

[112]

Gao X., Chen H., Schwarzschild M.A., Ascherio A. Use of ibuprofen and risk of Parkinson disease // Neurology. 2011. Vol. 76, N 10. P. 863–869. doi: 10.1212/WNL.0b013e31820f2d79

[113]

Williams-Gray CH, Wijeyekoon R, Yarnall AJ, et al. Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Movement Disorders. 2016;31(7):995–1003. doi: 10.1002/mds.26563

[114]

Williams-Gray C.H., Wijeyekoon R., Yarnall A.J., et al. Serum immune markers and disease progression in an incident Parkinson's disease cohort (ICICLE-PD) // Movement Disorders. 2016. Vol. 31, N 7. P. 995–1003. doi: 10.1002/mds.26563

[115]

Horsager J, Andersen KB, Knudsen K, et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain. 2020;143(10):3077–3088. doi: 10.1093/brain/awaa238

[116]

Horsager J., Andersen K.B., Knudsen K., et al. Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study // Brain. 2020. Vol. 143, N 10. P. 3077–3088. doi: 10.1093/brain/awaa238

[117]

Kim S, Kwon SH, Kam TI, et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron. 2019;103(4):627–641. doi: 10.1016/j.neuron.2019.05.035

[118]

Kim S., Kwon S.H., Kam T.I., et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease // Neuron. 2019. Vol. 103, N 4. P. 627–641. doi: 10.1016/j.neuron.2019.05.035

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/