Oxidative stress and inflammation in COVID-19 pathogenesis
Vladimir G. Kukes , Olga K. Parfenova , Nikita G. Sidorov , Yuri V. Olefir , Albina А. Gazdanova
Russian Medicine ›› 2020, Vol. 26 ›› Issue (4) : 244 -247.
Oxidative stress and inflammation in COVID-19 pathogenesis
This study discusses the role of oxidative stress and inflammation in the development of severe acute respiratory syndrome (SARS) associated with COVID-19 caused by the novel SARS-CoV-2 coronavirus. An analysis of the literature revealed that the development of respiratory viral infections, including COVID-19, is usually accompanied by the accumulation of acidic metabolic products in the blood and tissues and, accordingly, oxidative stress and increased levels of cytokines. In this regard, it seems appropriate to use the second-generation low-toxic antioxidant Ethoxidol, manufactured in Russia, which reduces the intensity of inflammation, and also improves blood oxygen saturation.
review / COVID-19 / oxidative stress / inflammation / cytokines / antioxidants / Ethoxidol
| [1] |
Delgado-Roche L., Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020;51(5):384-387. Doi: 10.1016/j.arcmed.2020.04.019. |
| [2] |
Kolesnikova L.I., Darenskaya M.A., Kolesnikov S.I. Free radical oxidation: a pathophysiologist’s view. Byulleten’ sibirskoy meditsiny. 2017;16(4):16-29. (in Russian) Doi: 10.20538/1682-0363-2017-4-16-29. |
| [3] |
Колесникова Л.И., Даренская М.А., Колесников С.И. Свободнорадикальное окисление: взгляд патофизиолога. Бюллетень сибирской медицины. 2017;16(4):16-29. Doi: 10.20538/1682-0363-2017-4-16-29. |
| [4] |
Woyke S., Rauch S., Strohle M., Gattere H. Modulation of Hb-O2 affinity to improve hypoxemia in COVID-19 patients. Clin Nutr. 2020; S0261-5614(20)30210-7. Doi: 10.1016/j.clnu.2020.04.036. |
| [5] |
Woyke S., Rauch S., Strohle M., Gattere H. Modulation of Hb-O2 affinity to improve hypoxemia in COVID-19 patients. Clin Nutr. 2020;S0261-5614(20)30210-7. Doi: 10.1016/j.clnu.2020.04.036. |
| [6] |
Muronets V.I., Fokina K.V., Yazykova M.Yu. Participation of glyceraldehyde-3-phosphate dehydrogenase in the regulation of 2,3-diphosphoglycerate level in erythrocytes. Biokhimiya. 2000;65(4): 547-52. (in Russian) |
| [7] |
Муронец В.И., Фокина К.В., Языкова М.Ю. Участие гли¬це¬ральдегид-3-фосфатдегидрогеназы в регуляции обра¬зо¬ва¬ния 2,3-дифосфоглицерата в эритроцитах. Биохимия. 2000;65(4): 547-52. |
| [8] |
Zhao M., Wang M., Zhang J., Ye J., Xu Y., Wang Z. et al. Advances in the relationship between coronavirus infection and cardiovascular diseases. Biomed Pharmacother. 2020;127:110230. Doi: 10.1016/j.biopha.2020.110230. |
| [9] |
Divani A.A., Andalib S., Di Napoli M., Lattanzi S., Hussain M.S., Biller J. et al. Coronavirus disease 2019 and stroke: clinical manifestations and pathophysiological insights. J Stroke Cerebrovasc Dis. 2020;29(8):104941. Doi: 10.1016/j.jstrokecerebrovasdis.2020.104941. |
| [10] |
Sousa T., Oliveira S., Afonso J., Morato M., Patinha D., Fraga S. et al. Role of H2O2 in hypertension, renin-angiotensin system activation and renal medullary disfunction caused by angiotensin II. Br J Pharmacol. 2012;166(8):2386-401. Doi: 10.1111/j. 1476-5381.2012.01957.x. |
| [11] |
Bloise E., Ciarmela P., Dela Cruz C., Luisi S., Petraglia F., Reis F.M. Activin A in mammalian physiology. Physiol Rev. 2019;99(1):739-80. Doi: 10.1152/physrev.00002.2018. |
| [12] |
Hardy C.L., King S.J., Mifsud N.A., Hedger M.P., Phillips D.J., Mackay F. et al. The activin A antagonist follistatin inhibits cystic fibrosis-like lung inflammation and pathology. Immunol Cell Biol. 2015;93(6):567-74. Doi: 10.1038/icb.2015.7. |
| [13] |
Hansen J.S., Plomgaard P. Circulating follistatin in relation to energy metabolism. Mol Cell Endocrinol. 2016;433:87-93. Doi: 10.1016/j.mce.2016.06.002. |
| [14] |
Kukes V.G., Olefir Y.V., Romanov B.K., Prokofiev A.B., Parfenova E.V., Boldyreva M.A. et al. The mechanism of action of follistatin-like protein-1 (FSTL-1). Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya. 2019;9(4):256-60. (in Russian) Doi: 10.30895/1991-2919-2019-9-4-256-260. |
| [15] |
Кукес В.Г., Олефир Ю.В., Романов Б.К., Прокофьев А.Б., Парфенова Е.В., Болдырева М.А. и др. Механизм действия фоллистатин-подобного белка-1 (FSTL-1). Ведомости Научного центра экспертизы средств медицинского применения. 2019;9(4):256-60. Doi: 10.30895/1991-2919-2019-9-4-256-260. |
| [16] |
Romanov B.K. Coronavirus disease COVID-2019. Bezopasnost’ i risk farmakoterapii. 2020;8(1):3-8. (in Russian) Doi: 10.30895/2312-7821-2020-8-1-3-8. |
| [17] |
Романов Б.К. Коронавирусная инфекция COVID-2019. Безопасность и риск фармакотерапии. 2020;8(1):3-8. Doi: 10.30895/2312-7821-2020-8-1-3-8. |
| [18] |
Kukes V.G. The results of a study of a domestic drug, an antioxidant of the second generation of ethoxidol. [Itogi issledovaniya otechestvennogo preparata, antioksidanta II pokoleniya etoksidola]. Moscow: MAKFiF; 2017. (in Russian) |
| [19] |
Кукес В.Г. Итоги исследования отечественного препарата, антиоксиданта II поколения этоксидола. М.: МАКФиФ; 2017. |
| [20] |
Kukes V.G., Parfenova O.K., Romanov B.K., Prokof’ev A.B., Parfenova E.V., Sidorov N.G. et al. The mechanism of action of ethoxidol on oxidative stress indices in heart failure and hypotension. Sovremennye tekhnologii v meditsine. 2020;12(2):67-73. (in Russian) Doi: 10.17691/stm2020.12.2.08. |
| [21] |
Кукес В.Г., Парфенова О.К., Романов Б.К., Прокофьев А.Б., Парфенова Е.В., Сидоров Н.Г. и др. Механизм действия Этоксидола на показатели окислительного стресса при сердечной недостаточности и гипертонии. Современные технологии в медицине. 2020;12(2):67-73. Doi: 10.17691/stm2020.12.2.08. |
Eco-Vector
/
| 〈 |
|
〉 |