Analysis of plasma hemostasis and the role of microvesicles in the coagulation process in patients with COVID-19

Elena S. Gracheva , Rufina R. Abdullina , Il’shat G. Mustafin , Diana I. Abdulganieva

Kazan medical journal ›› 2024, Vol. 105 ›› Issue (6) : 917 -925.

PDF (346KB)
Kazan medical journal ›› 2024, Vol. 105 ›› Issue (6) : 917 -925. DOI: 10.17816/KMJ633994
Theoretical and clinical medicine
research-article

Analysis of plasma hemostasis and the role of microvesicles in the coagulation process in patients with COVID-19

Author information +
History +
PDF (346KB)

Abstract

BACKGROUND: Coagulopathies in COVID-19 are an important aspect in the pathophysiological mechanisms, clinical picture of the disease, and occurrence of delayed complications.

AIM: To study plasma hemostasis using turbidimetry, thromboelastography, and the role of microvesicles in the coagulation process in patients with COVID-19.

MATERIAL AND METHODS: The study used blood samples from patients of the temporary infectious diseases hospital based on the State Autonomous Healthcare Institution “Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan” in Kazan (n=213) in the period from June to August 2020. Patients were divided into two groups according to the severity of the disease: the first group — moderate COVID-19 (n=138), the second group — severe COVID-19 (n=75). Patients were treated according to the protocols of the Temporary Methodological Recommendations of the Ministry of Health of the Russian Federation, version 7. The blood of healthy donors (n=20) was used as a control group. Plasma hemostasis was assessed using dynamic turbidimetry (measured lag period — Lag, polymerization rate — V, maximum optical density at a given wavelength — Amax) and thromboelastography (determined coagulation activation time — R). Statistical processing of the results was performed using IBM SPSS Statistics 26.0. The groups were compared using the nonparametric Mann–Whitney U-test. Statistical processing of the results following standart normal distribution was performed using the Student's t-test. Differences were considered significant at p <0.05.

RESULTS: Severe COVID-19 was characterized by an increase in the lag period (9.4±0.8 min relative to the control 6.2±1.2 min; p <0.0001), a decrease in the polymerization rate (1.12±0.71 OD units/s relative to the control 3.93±2.3 OD units/s; p <0.0001) and a decrease in the maximum optical density of the clot (0.576±0.17 OD units relative to the control 1.625±0.433 OD units; p <0.0001). In moderate cases, a shortening of the lag period was noted (3.8±1.1 min relative to the control 6.2±1.2 min; p=0.0004), the maximum optical density of the clot was lower than the control (1.412±0.351 OD units at 1.625±0.433 OD units, respectively; p=0.0007). In patients with moderate disease severity, a 1.6-fold reduction in coagulation activation time was noted relative to the control group. In patients with severe disease, coagulation activation time was increased by 1.5 times relative to the control. After adding microvesicles to the samples, this parameter decreased by 2.12 times in patients with a moderate course of the disease (16.9±1.1 min and 8±0.6 min; p <0.0001), and by 1.44 times in patients with a severe course of the disease (10.8±0.9 min and 7.5±0.5 min; p <0.0001).

CONCLUSION: Moderate COVID-19 is characterized by signs of hypercoagulation, which can lead to the development of thrombotic complications; severe disease is accompanied by hypocoagulation, which contributes to hemorrhagic complications.

Keywords

COVID-19 / fibrin clot polymerization / plasma hemostasis / microvesicles

Cite this article

Download citation ▾
Elena S. Gracheva, Rufina R. Abdullina, Il’shat G. Mustafin, Diana I. Abdulganieva. Analysis of plasma hemostasis and the role of microvesicles in the coagulation process in patients with COVID-19. Kazan medical journal, 2024, 105(6): 917-925 DOI:10.17816/KMJ633994

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baklaushev VP, Kulemsin SВ, Gorchakov АА, Lesnyak VN, Yusubalieva GМ, Sotnikova АG. COVID-19. Etiology, pathogenesis, diagnosis and treatment. Journal of Clinical Practice. 2020;11(1):7–20. (In Russ.) doi: 10.17816/clinpract26339

[2]

Баклаушев В.П., Кулемзин С.В., Горчаков А.А., и др. COVID-19. Этиология, патогенез, диагностика и лечение // Клиническая практика. 2020. Т. 11, № 1. С. 7–20. doi: 10.17816/clinpract26339

[3]

Wang D, Hu B, Hu C. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi: 10.1001/jama.2020.1585

[4]

Wang D., Hu B., Hu C., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China // JAMA. 2020. Vol. 323, N. 11. Р. 1061–1069. doi: 10.1001/jama.2020.1585

[5]

Roitman EV, Vavilova TV, Markin SM, Kravtsov PF, Mazayshvili KV. The realities of the anticoagulant therapy using in COVID-19. Tromboz, Gemostaz i Reologiya. 2021;(1):18–25. (In Russ.) doi: 10.25555/THR.2021.1.0957

[6]

Ройтман Е.В., Вавилова Т.В., Маркин С.М., и др. Реалии применения антикоагулянтной терапии при COVID-19 // Тромбоз, гемостаз и реология. 2021. № 1. С. 18–25. doi: 10.25555/THR.2021.1.0957

[7]

Kolesnikov VV. Roitman EV, Leonov AA. Anticoagulant treatment for severe COVID-19 with high bleeding risk. Tromboz, Gemostaz i Reologiya. 2022;(1):59–68. (In Russ.) doi: 10.25555/THR.2022.1.1010

[8]

Колесников В.В., Ройтман Е.В., Леонов А.А. Антикоагулянтная терапия у пациентов с тяжёлым течением COVID-19 и высоким риском кровотечения // Тромбоз, гемостаз и реология. 2022. № 1. С. 59–68. doi: 10.25555/THR.2022.1.1010

[9]

Shatohin YuV, Snezhko IV, Ryabikina EV. Violation of hemostasis in coronavirus infection. South Russian Journal of Therapeutic Practice. 2021;2(2):6–15. (In Russ.) doi: 10.21886/2712-8156-2021-2-2-6-15

[10]

Шатохин Ю.В., Снежко И.В., Рябикина Е.В. Нарушение гемостаза при коронавирусной инфекции // Южно-Российский журнал терапевтической практики. 2021. Т. 2, № 2. С. 6–15. doi: 10.21886/2712-8156-2021-2-2-6-15

[11]

Yokota S, Kuroiwa E, Nishioka K. Novel coronavirus disease (COVID-19) and cytokine storms. For more effective treatments from the viewpoints of an inflammatory pathophysiology perspective. Infectious diseases: news, opinions, training. 2020;9(4):13–25. doi: 10.33029/2305-3496-2020-9-4-13-25

[12]

Йокота Ш., Куройва Е., Нишиока К. Новая коронавирусная болезнь (COVID-19) и «цитокиновый шторм». Перспективы эффективного лечения с точки зрения патофизиологии воспалительного процесса // Инфекционные болезни: новости, мнения, обучение. 2020. Т. 9, № 4. С. 13–25. doi: 10.33029/2305-3496-2020-9-4-13-25

[13]

Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13(3):269–288. doi: 10.1111/j.1365-2141.1967.tb08741.x

[14]

Wolf P. The nature and significance of platelet products in human plasma // Br J Haematol. 1967. Vol. 13, N. 3. P. 269–288. doi: 10.1111/j.1365-2141.1967.tb08741.x

[15]

Zubairov DM, Zubairova LD. Mikrovezikuly v krovi: funktsii i ikh rol' v tromboobrazovanii. (Microvesicles in the blood: functions and their role in thrombus formation.) Moscow: GEOTAR-MED; 2009. 167 p. (In Russ.)

[16]

Зубаиров Д.М., Зубаирова Л.Д. Микровезикулы в крови: функции и их роль в тромбообразовании. Москва: ГЭОТАР-Медиа, 2009. 167 с.

[17]

Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, Pesenti A, Peyvandi F, Tripodi A. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738–1742. doi: 10.1111/jth.14850

[18]

Panigada M., Bottino N., Tagliabue P., et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis // J Thromb Haemost. 2020. Vol. 18, N. 7. P. 1738–1742. doi: 10.1111/jth.14850

[19]

Hippensteel JA, Burnham EL, Jolley SE. Prevalence of venous thromboembolism in critically ill patients with COVID-19. Br J Haematol. 2020;190(3):e134–e137. doi: 10.1111/bjh.16908

[20]

Hippensteel J.A., Burnham E.L., Jolley S.E. Prevalence of venous thromboembolism in critically ill patients with COVID-19 // Br J Haematol. 2020. Vol. 190, N. 3. P. 134–137. doi: 10.1111/bjh.16908

[21]

Khismatullin RR, Ivaeva RA, Abdullayeva S, Shakirova AZ, Khuzin FF, Kiassov AP, Litvinov RI. Pathological manifestations of inflammatory microthrombosis in COVID-19. Kazan Medical Journal. 2022;103(4):575–586 (In Russ.) doi: 10.17816/KMJ2022-575

[22]

Хисматуллин Р.Р., Иваева Р.А., Абдуллаева Ш., и др. Патоморфологические проявления воспалительного микротромбоза при COVID-19 // Казанский медицинский журнал. 2022. Т. 103, №4. C. 575–586. doi: 10.17816/KMJ2022-575

[23]

Hamali HA, Saboor M, Dobie G, Madkhali AM, Akhter MS, Hakamy A, Al-Mekhlafi HM, Jackson DE, Matari YH, Mobarki AA. Procoagulant microvesicles in COVID-19 patients: Possible modulators of inflammation and prothrombotic tendency. Infect Drug Resist. 2022;15:2359–2368. doi: 10.2147/IDR.S355395

[24]

Hamali H.A., Saboor M., Dobie G., et al. Procoagulant microvesicles in COVID-19 patients: Possible modulators of inflammation and prothrombotic tendency // Infect Drug Resist. 2022. Vol. 15. P. 2359–2368. doi: 10.2147/IDR.S355395

[25]

Nieri D, Neri T, Petrini S, Vagaggini B, Paggiaro P, Celi A. Cell-derived microparticles and the lung. Eur Respir Rev. 2016;25(141):266–277. doi: 10.1183/16000617.0009-2016

[26]

Nieri D., Neri T., Petrini S., et al. Cell-derived microparticles and the lung // Eur Respir Rev. 2016. Vol. 141, N. 25. P. 266–277. doi: 10.1183/16000617.0009-2016

[27]

Guervilly C, Bonifay A, Burtey S, Sabatier F, Cauchois R, Abdili E, Arnaud L, Lano G, Pietri L, Robert T, Velier M, Papazian L, Albanese J, Kaplanski G, Dignat-George F, Lacroix R. Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19. Blood Adv. 2021;5(3):628–634. doi: 10.1182/bloodadvances.2020003308

[28]

Guervilly C., Bonifay A., Burtey S., et al. Dissemination of extreme levels of extracellular vesicles: tissue factor activity in patients with severe COVID-19 // Blood Adv. 2021. Vol. 5, N. 3. P. 628–634. doi: 10.1182/bloodadvances.2020003308

[29]

Sirotkina OV, Ermakov AI, Zhilenkova YI, Zolotova EA, Kudlay DA, Vavilova TV, Gaykovaya LB. Dynamics of microvesicle formation in blood in patients with COVID-19 at different stages of the disease. Preventive and clinical medicine. 2021;81(4):68–74 (In Russ.) doi: 10.47843/2074-9120_2021_4_68

[30]

Сироткина О.В., Ермаков А.И., Жиленкова Ю.И., и др. Динамика образования микровезикул клеток крови у больных COVID-19 на разных стадиях заболевания // Профилактическая и клиническая медицина. 2021. Т. 81, № 4. С. 68–74. doi: 10.47843/2074-9120_2021_4_68

[31]

Yarets YI. Tromboehlastografiya: osnovnye pokazateli, interpretatsiya rezul'tatov. (Thromboelastography: main indicators, interpretation of results.) Gomel: State Institution “RNPC RMiEH”; 2018. 26 p. (In Russ.)

[32]

Ярец Ю.И. Тромбоэластография: основные показатели, интерпретация результатов. Гомель: ГУ «РНПЦ РМиЭЧ», 2018. 26 с.

[33]

Nabiullina RM, Mustafin IG, Ataullakhanov FI, Litvinov RI, Zubairova L.D. Thrombin-mediated effects of blood microparticles on formation, structure, and stability of fibrin clots. IM Sechenov Russian Journal of Physiology. 2015;101(7):812–821. (In Russ.) EDN: UABUTT

[34]

Набиуллина Р.М., Мустафин И.Г., Атауллаханов Ф.И., и др. Опосредованное тромбином влияние микровезикул крови на кинетику образования, структуру и свойства фибринового сгустка // Российский физиологический журнал им. И.М. Сеченова. 2015. Т. 101, № 7. С. 812–821. EDN: UABUTT

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (346KB)

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/