The role of the placenta in the formation of gestational complications in women with metabolic syndrome

Agamurad A. Orazmuradov , Ekaterina V. Mukovnikova , Irina V. Bekbaeva , Aylar A. Orazmuradova , Zhasmin Zh. Suleymanova

Kazan medical journal ›› 2024, Vol. 105 ›› Issue (4) : 596 -606.

PDF (325KB)
Kazan medical journal ›› 2024, Vol. 105 ›› Issue (4) : 596 -606. DOI: 10.17816/KMJ626829
Reviews
review-article

The role of the placenta in the formation of gestational complications in women with metabolic syndrome

Author information +
History +
PDF (325KB)

Abstract

Over the past decade, the prevalence of metabolic syndrome has increased significantly worldwide, and in most countries around the world this non-communicable disease has become a major health threat. Today, the mechanisms of metabolic syndrome influence on the development of various pregnancy complications are actively discussed. Studies of the pathophysiological mechanisms of the relationship between metabolic disorders and placental-associated pregnancy complications deserve special attention. The placenta performs essential functions throughout pregnancy and serves as a site for nutrient exchange and gas exchange between the pregnant woman and the fetus. Metabolic changes in women are closely associated with a number of placentally mediated obstetric complications, including preeclampsia, placental insufficiency, macrosomia, fetal growth restriction and antenatal fetal death. It is believed that it is in the first trimester of pregnancy that trophoblast cells are most sensitive to metabolic changes in homeostasis, which leads to their ischemia, impaired proliferation, invasion and angiogenesis. In pregnancies complicated by metabolic syndrome, the placenta is exposed to inflammation, oxidative stress, dyslipidemia, hyperglycemia, and altered hormone levels. Such metabolic changes can affect the development and function of the placenta, leading to abnormal fetal growth, as well as metabolic and cardiovascular disorders in children in the long term. Despite the wide range of pregnancy complications with metabolic syndrome, the mechanisms of their development have not been sufficiently studied. The purpose of this review was to summarize current knowledge about the pathophysiological mechanisms of the influence of metabolic syndrome on the development and function of the placenta.

Keywords

metabolic syndrome / placenta / gestational diabetes mellitus / obesity / preeclampsia / placental insufficiency / review

Cite this article

Download citation ▾
Agamurad A. Orazmuradov, Ekaterina V. Mukovnikova, Irina V. Bekbaeva, Aylar A. Orazmuradova, Zhasmin Zh. Suleymanova. The role of the placenta in the formation of gestational complications in women with metabolic syndrome. Kazan medical journal, 2024, 105(4): 596-606 DOI:10.17816/KMJ626829

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berezhanskaya SB, Lebedenko AA, Afonin AA, Panova IV, Luk¬yanova EA, Abduragimova MH, Dombayan SH. The role of placental abnormalities in development of perinatal brain damage in the foetus and the newborn (a literature review). Siberian Medical Review. 2022;(6):138. (In Russ.) doi: 10.20333/25000136-2022-6-13-23

[2]

Бережанская С.Б., Лебеденко А.А., Афонин А.А., и др. Роль плацентарных нарушений в развитии перинатального повреждения головного мозга плода и новорождённого // Сибирское медицинское обозрение. 2022. № 6. С. 138. doi: 10.20333/25000136-2022-6-13-23

[3]

Lipatov IS, Tezikov YV, Azamatov AR, Shmakov RG. Identity of preeclampsia and metabolic syndrome clinical manifestations: searching for substantiation. Obstetrics and Gynegology (Moscow). 2021;3:81–89. (In Russ.) doi: 10.18565/aig.2021.3.81-89

[4]

Липатов И.С., Тезиков Ю.В., Азаматов А.Р., Шмаков Р.Г. Общность клинических проявлений преэклампсии и метаболического синдрома: поиск обоснования // Акушерство и гинекология. 2021. № 3. С. 81–89. doi: 10.18565/aig.2021.3.81-89

[5]

Arakelyan GA, Orazmuradov AA, Mayatskaya TA, Bekbaeva IV, Kotaysh GA. THE Condition of newborns from mothers with gestatio¬nal diabetes mellitus and pregestational obesity. Obstetrics and gynecology: news, opinions, training. 2020;8(S3):24–29. (In Russ.) doi: 10.24411/2303-9698-2020-13904

[6]

Аракелян Г.А., Оразмурадов А.А., Маяцкая Т.А., и др. Особенности новорождённых от матерей с гестационным сахарным диабетом и прегестационным ожирением // Акушерство и гинекология: новости, мнения, обучение. 2020. Т. 8, № S3. С. 24–29. doi: 10.24411/2303-9698-2020-13904

[7]

Ozhirenie. Diabet. Beremennost'. Versii i kontraversii. Klinicheskie praktiki. Perspektivy. (Obesity. Diabetes. Pregnancy. Versions and contraversions. Clinical practic¬es. Perspectives.) VE Radzinskii, TL Botasheva, GA Kotaysh, editors. Moscow: GEOTAR-Media; 2020. p. 28–30. (In Russ.)

[8]

Ожирение. Диабет. Беременность. Версии и контраверсии. Клинические практики. Перспективы / Под ред. В.Е. Радзинского, Т.Л. Боташевой, Г.А. Котайш. Москва: ГЭОТАР-Медиа, 2020. с. 28–30.

[9]

Bicocca MJ, Mendez-Figueroa H, Chauhan SP, Sibai BM. Maternal obesity and the risk of early-onset and late-onset hypertensive disorders of pregnancy. Obstet Gynecol. 2020;136(1):118–127. doi: 10.1097/AOG.0000000000003901

[10]

Bicocca M.J., Mendez-Figueroa H., Chauhan S.P., Sibai B.M. Maternal obesity and the risk of early-onset and late-onset hypertensive disorders of pregnancy // Obstet Gynecol. 2020. Vol. 136, N. 1. P. 118–127. doi: 10.1097/AOG.0000000000003901

[11]

Lipatov IS, Tezikov YuV, Shmakov RG, Azamatov AR, Martynova NV. Pregnancy is a natural model of metabolic syndrome: results of a dynamic study of physiological gestation. Obstetrics and Gynegology (Moscow). 2020;(9):88–96. (In Russ.) doi: 10.18565/aig.2020.9.88-96

[12]

Липатов И.С., Тезиков Ю.В., Шмаков Р.Г., и др. Беременность — естественная модель метаболического синдрома: результаты динамического исследования физиологической гестации // Акушерство и гинекология. 2020. № 9. С. 88–96. doi: 10.18565/aig.2020.9.88-96

[13]

Kuzina IA, Goncharova EV, Martirosian NS, Telnova ME, Atamanova YA, Yudina KA, Petunina NA. Hemostasis in women with obesity and metabolic syndrome. RMJ. Medical review. 2021;5(9):598–604. (In Russ.) doi: 10.32364/2587-6821-2021-5-9-598-604

[14]

Кузина И.А., Гончарова Е.В., Мартиросян Н.С., и др. Состояние гемостаза у женщин с ожирением и метаболическим синдромом // РМЖ. Медицинское обозрение. 2021. Т. 5, № 9. С. 598–604. doi: 10.32364/2587-6821-2021-5-9-598-604

[15]

Musa E, Salazar-Petres E, Arowolo A, Levitt N, Matjila M, Sferruzzi-Perri AN. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J Physiol. 2023;601(7):1287–1306. doi: 10.1113/JP284139

[16]

Musa E., Salazar-Petres E., Arowolo A., et al. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women // Physiol. 2023. Vol. 601, N. 7. P. 1287–1306. doi: 10.1113/JP284139

[17]

Huhtala MS, Tertti K, Juhila J, Sorsa T, Rönnemaa T. Metformin and insulin treatment of gestational diabetes: Effects on inflammatory markers and IGF-binding protein-1 — secondary analysis of a randomized controlled trial. BMC Pregnancy Childbirth. 2020;20(1):401. doi: 10.1186/s12884-020-03077-6

[18]

Huhtala M.S., Tertti K., Juhila J., et al. Metformin and insulin treatment of gestational diabetes: Effects on inflammatory markers and IGF-binding protein-1 — secondary analysis of a randomized controlled trial // BMC Pregnancy Childbirth. 2020. Vol. 20, N. 1. P. 401. doi: 10.1186/s12884-020-03077-6

[19]

Li M, Huang Y, Xi H, Zhang W, Xiang Z, Wang L, Li X, Guo H. Circ_FOXP1 promotes the growth and survival of high glucose-treated human trophoblast cells through the regulation of miR-508-3p/SMAD family member 2 pathway. Endocr J. 2022;69(9):1067–1078. doi: 10.1507/endocrj.EJ21-0528

[20]

Li M., Huang Y., Xi H., et al. Circ_FOXP1 promotes the growth and survival of high glucose-treated human trophoblast cells through the regulation of miR-508-3p/SMAD family member 2 pathway // Endocr J. 2022 Vol. 69, N. 9. P. 1067–1078. doi: 10.1507/endocrj.EJ21-0528

[21]

Zhou X, Xiang C, Zheng X. miR-132 serves as a diagnostic biomarker in gestational diabetes mellitus and its regulatory effect on trophoblast cell viability. Diagn Pathol. 2019;14(1):119. doi: 10.1186/s13000-019-0899-9

[22]

Zhou X., Xiang C, Zheng X. miR-132 serves as a diagnostic biomarker in gestational diabetes mellitus and its regulatory effect on trophoblast cell viability // Diagn Pathol. 2019. Vol. 14, N. 1. P. 119. doi: 10.1186/s13000-019-0899-9

[23]

Peng HY, Li MQ, Li HP. MiR-137 restricts the viability and migration of HTR-8/SVneo cells by downregulating FNDC5 in gestational dia¬betes mellitus. Curr Mol Med. 2019;19(7):494–505. doi: 10.2174/1566524019666190520100422

[24]

Peng H.Y., Li M.Q., Li H.P. MiR-137 restricts the viability and migration of HTR-8/SVneo cells by downregulating FNDC5 in gestatio¬nal diabetes mellitus // Curr Mol Med. 2019. Vol. 19, N. 7. P. 494–505. doi: 10.2174/1566524019666190520100422

[25]

Zhang C, Wang L, Chen J, Song F, Guo Y. Differential expression of miR-136 in gestational diabetes mellitus mediates the high-glucose-induced trophoblast cell injury through targeting E2F1. Int J Geno¬mics. 2020;20:3645371. doi: 10.1155/2020/3645371

[26]

Zhang C., Wang L., Chen J., et al. Differential expression of ¬miR-136 in gestational diabetes mellitus mediates the high-glucose-induced trophoblast cell injury through targeting E2F1 // Int J Geno¬mics. 2020. Vol. 20. P. 3645371. doi: 10.1155/2020/3645371

[27]

Ke W, Chen Y, Zheng L, Zhang Y, Wu Y, Li L. miR-134-5p promotes inflammation and apoptosis of trophoblast cells via regulating FOXP2 transcription in gestational diabetes mellitus. Bioengineered. 2022;13(1):319–330. doi: 10.1080/21655979.2021.2001219

[28]

Ke W., Chen Y., Zheng L., et al. miR-134-5p promotes inflammation and apoptosis of trophoblast cells via regulating FOXP2 transcription in gestational diabetes mellitus // Bioengineered. 2022. Vol. 13, N. 1. P. 319–330. doi: 10.1080/21655979.2021.2001219

[29]

Zhang C, Zhao D. MicroRNA-362-5p promotes the proliferation and inhibits apoptosis of trophoblast cells via targeting glutathione-disulfide reductase. Bioengineered. 2021;12(1):2410–2419. doi: 10.1080/21655979.2021.1933678

[30]

Zhang C., Zhao D. MicroRNA-362-5p promotes the proliferation and inhibits apoptosis of trophoblast cells via targeting glutathione-disulfide reductase // Bioengineered. 2021. Vol. 12, N. 1. P. 2410–2419. doi: 10.1080/21655979.2021.1933678

[31]

Shou C, Wei YM, Wang C, Yang HX. Updates in long-term maternal and fetal adverse effects of gestational diabetes mellitus. Maternal-Fetal Medicine. 2020;1(2):91–94. doi: 10.1097/FM9.0000000000000019

[32]

Chong S., Wei Y.M., Chen W., Yang H.X. Updates in long-term maternal and fetal adverse effects of gestational diabetes mellitus // Maternal-Fetal Medicine. 2019. Vol. 1, N. 2. P. 91–94. doi: 10.1097/FM9.0000000000000019

[33]

Chakraborty C, Gleeson LM, McKinnon T, Lala PK. Regulation of human trophoblast migration and invasiveness. Can J Physiol Pharmacol. 2002;80(2):116–124. doi: 10.1139/y02-016

[34]

Chakraborty C., Gleeson L.M., McKinnon T., Lala P.K. Regulation of human trophoblast migration and invasiveness // Can J Physiol Pharmacol. 2002. Vol. 80, N. 2. P. 116–124. doi: 10.1139/y02-016

[35]

Belkacemi L, Lash GE, Macdonald-Goodfellow SK, Caldwell JD, Graham CH. Inhibition of human trophoblast invasiveness by high glucose concentrations. J Clin Endocrinol Metab. 2005;90(8):4846–4851. doi: 10.1210/jc.2004-2242

[36]

Belkacemi L., Lash G.E., Macdonald-Goodfellow S.K., et al. Inhibition of human trophoblast invasiveness by high glucose concentrations // J Clin Endocrinol Metab. 2005. Vol. 90, N. 8. P. 4846–4851. doi: 10.1210/jc.2004-2242

[37]

Lai R, Ji L, Zhang X, Xu Y, Zhong Y, Chen L, Hu H, Wang L. Stanniocalcin2 inhibits the epithelial-mesenchymal transition and invasion of trophoblasts via activation of autophagy under high-glucose conditions. Mol Cell Endocrinol. 2022;547:111598. doi: 10.1016/j.mce.2022.111598

[38]

Lai R., Ji L., Zhang X., et al. Stanniocalcin2 inhibits the epithelial-mesenchymal transition and invasion of trophoblasts via activation of autophagy under high-glucose conditions // Mol Cell Endocrinol. 2022. Vol. 547. P. 111598. doi: 10.1016/j.mce.2022.111598

[39]

Zhang J, Bai WP. C1q/tumor necrosis factor related protein 6 (CTRP6) regulates the phenotypes of high glucose-induced gestational trophoblast cells via peroxisome proliferator-activated receptor gamma (PPARγ) signaling. Bioengineered. 2022;13(1):206–216. doi: 10.1080/21655979.2021.2012906

[40]

Zhang J., Bai W.P. C1q/tumor necrosis factor related protein 6 (CTRP6) regulates the phenotypes of high glucose-induced gestational trophoblast cells via peroxisome proliferator-activated receptor gamma (PPARγ) signaling // Bioengineered. 2022. Vol. 13, N. 1. P. 206–216. doi: 10.1080/21655979.2021.2012906

[41]

Zhao H, Wong RJ, Stevenson DK. The impact of hypoxia in early pregnancy on placental cells. Int J Mol Sci. 2021;22(18):9675. doi: 10.3390/ijms22189675

[42]

Zhao H., Wong R.J., Stevenson D.K. The impact of hypoxia in early pregnancy on placental cells // Int J Mol Sci. 2021. Vol. 22, N. 18. P. 9675. doi: 10.3390/ijms22189675

[43]

James JL, Boss AL, Sun C, Allerkamp HH, Clark AR. From stem cells to spiral arteries: A journey through early placental development. Placenta. 2022;125:68–77. doi: 10.1016/j.placenta.2021.11.004

[44]

James J.L., Boss A.L., Sun C., et al . From stem cells to spiral arteries: A journey through early placental development // Placenta. 2022. Vol. 125. P. 68–77. doi: 10.1016/j.placenta.2021.11.004

[45]

Nteeba J, Varberg KM, Scott RL, Simon ME, Iqbal K, Soares MJ. Poorly controlled diabetes mellitus alters placental structure, efficiency, and plasticity. BMJ Open Diabetes Res Care. 2020;8(1):e001243. doi: 10.1136/bmjdrc-2020-001243

[46]

Nteeba J., Varberg K.M., Scott R.L., et al. Poorly controlled diabetes mellitus alters placental structure, efficiency, and plasticity // BMJ Open Diabetes Res Care. 2020. Vol. 8, N. 1. P. e001243. doi: 10.1136/bmjdrc-2020-001243

[47]

Liu H, Ning F, Lash GE. Contribution of vascular smooth muscle cell apoptosis to spiral artery remodeling in early human pregnancy. Placenta. 2022;120:10–17. doi: 10.1016/j.placenta.2022.02.005

[48]

Liu H., Ning F., Lash G.E. Contribution of vascular smooth muscle cell apoptosis to spiral artery remodeling in early human pregnancy // Placenta. 2022. Vol. 120. P. 10–17. doi: 10.1016/j.placenta.2022.02.005

[49]

Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells. 2019;8(5):471. doi: 10.3390/cells8050471

[50]

Akwii R.G., Sajib M.S., Zahra F.T., Mikelis C.M. Role of angiopo¬ietin-2 in vascular physiology and pathophysiology // Cells. 2019. Vol. 8, N. 5. P. 471. doi: 10.3390/cells8050471

[51]

Kemp SS, Lin PK, Sun Z, Castano MA, Yrigoin K, Penn MR, Davis GE. Molecular basis for pericyte-induced capillary tube network assembly and maturation. Front Cell Dev Biol. 2022;10:943533. doi: 10.3389/fcell.2022.943533

[52]

Kemp S.S., Lin P.K., Sun Z., et al. Molecular basis for pericyte-induced capillary tube network assembly and maturation // Front Cell Dev Biol. 2022. Vol. 10. P. 943533. doi: 10.3389/fcell.2022.943533

[53]

Stepan H, Galindo A, Hund M, Schlembach D, Sillman J, Surbek D, Vatish M. Clinical utility of sFlt-1 and PlGF in screening, prediction, dia¬gnosis and monitoring of pre-eclampsia and fetal growth restriction. Ultrasound Obstet Gynecol. 2023;61(2):168–180. doi: 10.1002/uog.26032

[54]

Stepan H., Galindo A., Hund M., et. al. Clinical utility of sFlt-1 and PlGF in screening, prediction, diagnosis and monitoring of pre-eclampsia and fetal growth restriction // Ultrasound Obstet Gynecol. 2023. Vol. 61, N. 2. P. 168–180. doi: 10.1002/uog.26032

[55]

Ives CW, Sinkey R, Rajapreyar I, Tita ATN, Oparil S. Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review. J Am Coll Cardiol. 2020;76(14):1690–1702. doi: 10.1016/j.jacc.2020.08.014

[56]

Ives C.W., Sinkey R., Rajapreyar I., Tita A.T.N., Oparil S. Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review // J Am Coll Cardiol. 2020. Vol. 76, N. 14. P. 1690–1702. doi: 10.1016/j.jacc.2020.08.014

[57]

Tao J, Xia LZ, Chen JJ, Zeng JF, Meng J, Wu S, Wang Z. High glucose condition inhibits trophoblast proliferation, migration and invasion by downregulating placental growth factor expression. J Obstet Gynaecol Res. 2020;46(9):1690–1701. doi: 10.1111/jog.14341

[58]

Tao J., Xia L.Z., Chen J.J., et al. High glucose condition inhibits trophoblast proliferation, migration and invasion by downregulating placental growth factor expression // J Obstet Gynaecol Res. 2020. Vol. 46, N. 9. P. 1690–1701. doi: 10.1111/jog.14341

[59]

Anness AR, Baldo A, Webb DR, Khalil A, Robinson TG, Mousa HA. Effect of metformin on biomarkers of placental-mediated disease: A systematic review and meta-analysis. Placenta. 2021;107:51–58. doi: 10.1016/j.placenta.2021.02.021

[60]

Anness A.R., Baldo A., Webb D.R., et al. Effect of metformin on biomarkers of placental-mediated disease: A systematic review and meta-analysis // Placenta. 2021. Vol. 107. P. 51–58. doi: 10.1016/j.placenta.2021.02.021

[61]

Al-Ofi E, Alrafiah A, Maidi S, Almaghrabi S, Hakami N. Altered expression of angiogenic biomarkers in pregnancy associated with gestational diabetes. Int J Gen Med. 2021;14:3367–3375. doi: 10.2147/IJGM.S316670

[62]

Al-Ofi E., Alrafiah A., Maidi S., et al. Altered expression of angiogenic biomarkers in pregnancy associated with gestational diabetes // Int J Gen Med. 2021. Vol. 14. P. 3367–3375. doi: 10.2147/IJGM.S316670

[63]

Tirpe AA, Gulei D, Ciortea SM, Crivii C, Berindan-Neagoe I. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 2019;20(24):6140. doi: 10.3390/ijms20246140

[64]

Tirpe A.A., Gulei D., Ciortea S.M., et al. Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes // Int J Mol Sci. 2019. Vol. 20, N. 24. P. 6140. doi: 10.3390/ijms20246140

[65]

Alqudah A, Eastwood KA, Jerotic D, Todd N, Hoch D, McNally R, Obradovic D, Dugalic S, Hunter AJ, Holmes VA, McCance DR, Young IS, Watson CJ, Robson T, Desoye G, Grieve DJ, McClements L. FKBPL and SIRT-1 are downregulated by diabetes in pregnancy impacting on angiogenesis and endothelial function. Front Endocrinol (Lausanne). 2021;12:650328. doi: 10.3389/fendo.2021.650328

[66]

Alqudah A., Eastwood K.A., Jerotic D., et al. FKBPL and SIRT-1 are downregulated by diabetes in pregnancy impacting on angioge¬nesis and endothelial function // Front Endocrinol (Lausanne). 2021. Vol. 12. P. 650328. doi: 10.3389/fendo.2021.650328

[67]

Weiß E, Berger HM, Brandl WT, Strutz J, Hirschmugl B, Simovic V, Tam-Ammersdorfer C, Cvitic S, Hiden U. Maternal overweight downregulates MME (Neprilysin) in feto-placental endothelial cells and in cord blood. Int J Mol Sci. 2020;21(3):834. doi: 10.3390/ijms21030834

[68]

Weiß E., Berger H.M., Brandl W.T., et al. Maternal overweight downregulates MME (Neprilysin) in feto-placental endothelial cells and in cord blood // Int J Mol Sci. 2020. Vol. 21, N. 3. P. 834. doi: 10.3390/ijms21030834

[69]

Hiden U, Lassance L, Tabrizi NG, Miedl H, Tam-Amersdorfer C, Cetin I, Lang U, Desoye G. Fetal insulin and IGF-II contribute to gestational diabetes mellitus (GDM)-associated up-regulation of membrane-type matrix metalloproteinase 1 (MT1-MMP) in the human feto-placental endothelium. J Clin Endocrinol Metab. 2012;97(10):3613–3621. doi: 10.1210/jc.2012-1212

[70]

Hiden U., Lassance L., Tabrizi NG., et al. Fetal insulin and IGF-II contribute to gestational diabetes mellitus (GDM)-associated up-regulation of membrane-type matrix metalloproteinase 1 (MT1-MMP) in the human feto-placental endothelium // J Clin Endocrinol Metab. 2012. Vol. 97, N. 10. P. 3613–3621. doi: 10.1210/jc.2012-1212

[71]

Keenan-Devlin L, Miller GE, Ernst LM, Freedman A, Smart B, Britt JL, Singh L, Crockett AH, Borders A. Inflammatory markers in serum and placenta in a randomized controlled trial of group prenatal care. Am J Obstet Gynecol MFM. 2023;5(12):101200. doi: 10.1016/j.ajogmf.2023.101200

[72]

Keenan-Devlin L., Miller G.E., Ernst L.M., et al. Inflammatory markers in serum and placenta in a randomized controlled trial of group prenatal care // Am J Obstet Gynecol MFM. 2023. Vol. 5, N. 12. P. 101200. doi: 10.1016/j.ajogmf.2023.101200

[73]

Li YX, Long DL, Liu J, Qiu D, Wang J, Cheng X, Yang X, Li RM, Wang G. Gestational diabetes mellitus in women increased the risk of neonatal infection via inflammation and autophagy in the placenta. Medicine (Baltimore). 2020;99(40):e22152. doi: 10.1097/MD.0000000000022152

[74]

Li Y.X., Long D.L., Liu J., et al. Gestational diabetes mellitus in women increased the risk of neonatal infection via inflammation and autophagy in the placenta // Medicine (Baltimore). 2020. Vol. 99, N. 40. P. e22152. doi: 10.1097/MD.0000000000022152

[75]

Díaz-Hernández I, Alecsandru D, García-Velasco JA, Domínguez F. Uterine natural killer cells: From foe to friend in reproduction. Hum Reprod Update. 2021;27(4):720–746. doi: 10.1093/humupd/dmaa062

[76]

Diaz-Hernandez I., Alecsandru D., García-Velasco J.A., Domínguez F. Uterine natural killer cells: From foe to friend in reproduction // Hum Reprod Update. 2021. Vol. 27, N. 4. P. 720–746. doi: 10.1093/humupd/dmaa062

[77]

St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal obesity and the uterine immune cell landscape: The shaping role of inflammation. Int J Mol Sci. 2020;21(11):3776. doi: 10.3390/ijms21113776

[78]

St-Germain L.E., Castellana B., Baltayeva J., Beristain A.G. Maternal obesity and the uterine immune cell landscape: The shaping role of inflammation // Int J Mol Sci. 2020. Vol. 21, N. 11. P. 3776. doi: 10.3390/ijms21113776

[79]

Ding J, Zhang Y, Cai X, Diao L, Yang C, Yang J. Crosstalk between trophoblast and macrophage at the maternal-fetal interface: Current status and future perspectives. Front Immunol. 2021;12:758281. doi: 10.3389/fimmu.2021.758281

[80]

Ding J., Zhang Y., Cai X., et al. Crosstalk between trophoblast and macrophage at the maternal-fetal interface: Current status and future perspectives // Front Immunol. 2021. Vol. 12. P. 758281. doi: 10.3389/fimmu.2021.758281

[81]

McElwain CJ, McCarthy FP, McCarthy CM. Gestational diabetes mellitus and maternal immune dysregulation: What we know so far. Int J Mol Sci. 2021;22(8):4261. doi: 10.3390/ijms22084261

[82]

McElwain C.J., McCarthy F.P., McCarthy C.M. Gestational diabetes mellitus and maternal immune dysregulation: what we know so far // Int J Mol Sci. 2021. Vol. 22, N. 8. P. 4261. doi: 10.3390/ijms22084261

[83]

Monaco-Brown M, Lawrence DA. Obesity and maternal-placental-fetal immunology and health. Front Pediatr. 2022;10:859885. doi: 10.3389/fped.2022.859885

[84]

Monaco-Brown M., Lawrence D.A. Obesity and maternal-placental-fetal immunology and health // Front Pediatr. 2022. Vol. 10. P. 859885. doi: 10.3389/fped.2022.859885

[85]

Denizli M, Capitano ML, Kua KL. Maternal obesity and the impact of associated early-life inflammation on long-term health of offspring. Front Cell Infect Microbiol. 2022;12:940937. doi: 10.3389/fcimb.2022.940937

[86]

Denizli M., Capitano M.L., Kua K.L. Maternal obesity and the impact of associated early-life inflammation on long-term health of offspring // Front Cell Infect Microbiol. 2022. Vol. 16, N. 12. P. 940937. doi: 10.3389/fcimb.2022.940937

[87]

Kubler JM, Clifton VL, Moholdt T, Beetham KS. The effects of ¬exercise during pregnancy on placental composition: A systematic review and meta-analysis. Placenta. 2022;117:39–46. doi: 10.1016/j.placenta.2021.10.008

[88]

Kubler J.M., Clifton V.L., Moholdt T., Beetham K.S. The effects of exercise during pregnancy on placental composition: A systematic review and meta-analysis // Placenta. 2022. Vol. 117. P. 39–46. doi: 10.1016/j.placenta.2021.10.008

[89]

Harvey L, van Elburg R, van der Beek EM. Macrosomia and large for gestational age in Asia: One size does not fit all. J Obstet Gynaecol Res. 2021;47(6):1929–1945. doi: 10.1111/jog.14787

[90]

Harvey L., van Elburg R., van der Beek E.M. Macrosomia and large for gestational age in Asia: One size does not fit all // J Obstet Gynaecol Res. 2021. Vol. 47, N. 6. P. 1929–1945. doi: 10.1111/jog.14787

[91]

Kelly AC, Powell TL, Jansson T. Placental function in maternal obesity. Clin Sci (Lond). 2020;134(8):961–984. doi: 10.1042/CS20190266

[92]

Kelly A.C., Powell T.L., Jansson T. Placental function in maternal obesity // Clin Sci (Lond). 2020. Vol. 134, N. 8. P. 961–984. doi: 10.1042/CS20190266

[93]

Sureshchandra S, Marshall NE, Messaoudi I. Impact of pregra¬vid obesity on maternal and fetal immunity: Fertile grounds for reprogramming. J Leukoc Biol. 2019;106(5):1035–1050. doi: 10.1002/JLB.3RI0619-181R

[94]

Sureshchandra S., Marshall N.E., Messaoudi I. Impact of pregra¬vid obesity on maternal and fetal immunity: Fertile grounds for reprogramming // J Leukoc Biol. 2019. Vol. 106, N. 5. P. 1035–1050. doi: 10.1002/JLB.3RI0619-181R

[95]

Daskalakis G, Marinopoulos S, Krielesi V, Papapanagiotou A, Papantoniou N, Mesogitis S, Antsaklis A. Placental pathology in women with gestational diabetes. Acta Obstet Gynecol Scand. 2008;87(4):403–407. doi: 10.1080/00016340801908783

[96]

Daskalakis G., Marinopoulos S., Krielesi V., et al. Placental patho¬logy in women with gestational diabetes // Acta Obstet Gynecol Scand. 2008. Vol. 87, N. 4. Р. 403–407. doi: 10.1080/00016340801908783

[97]

Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrup¬ters. Front Endocrinol (Lausanne). 2023;14:1215353. doi: 10.3389/fendo.2023.1215353

[98]

Basak S., Varma S., Duttaroy A.K. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters // Front Endocrinol (Lausanne). 2023. Vol. 14. P. 1215353. doi: 10.3389/fendo.2023.1215353

[99]

Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of maternal insulin resistance during pregnancy: An updated overview. J Diabetes Res. 2019;2019:5320156. doi: 10.1155/2019/5320156

[100]

Kampmann U., Knorr S., Fuglsang J., Ovesen P. Determinants of maternal insulin resistance during pregnancy: An updated overview // J Diabetes Res. 2019. P. 5320156. doi: 10.1155/2019/5320156

[101]

Sibiak R, Jankowski M, Gutaj P, Mozdziak P, Kempisty B, Wender-Ożegowska E. Placental lactogen as a marker of maternal obesity, dia¬betes, and fetal growth abnormalities: Current knowledge and cli¬nical perspectives. J Clin Med. 2020;9(4):1142. doi: 10.3390/jcm9041142

[102]

Sibiak R., Jankowski M., Gutaj P., et al. Placental lactogen as a marker of maternal obesity, diabetes, and fetal growth abnormalities: Current knowledge and clinical perspectives // J Clin Med. 2020. Vol. 9, N. 4. P. 1142. doi: 10.3390/jcm9041142

[103]

Fleenor D, Oden J, Kelly PA, Mohan S, Alliouachene S, Pende M, Wentz S, Kerr J, Freemark M. Roles of the lactogens and somatogens in perinatal and postnatal metabolism and growth: Studies of a no¬vel mouse model combining lactogen resistance and growth hormone deficiency. Endocrinology. 2005;146(1):103–112. doi: 10.1210/en.2004-0744

[104]

Fleenor D., Oden J., Kelly P.A., et al. Roles of the lactogens and somatogens in perinatal and postnatal metabolism and growth: Studies of a novel mouse model combining lactogen resistance and growth hormone deficiency // Endocrinology. 2005. Vol. 146, N. 1. P. 103–112. doi: 10.1210/en.2004-0744

[105]

Shallie PD, Naicker T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. Int J Dev Neurosci. 2019;73:41–49. doi: 10.1016/j.ijdevneu.2019.01.003

[106]

Shallie P.D., Naicker T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment // Int J Dev Neurosci. 2019. Vol. 73. P. 41–49. doi: 10.1016/j.ijdevneu.2019.01.003

[107]

Easton ZJW, Regnault TRH. The impact of maternal body composition and dietary fat consumption upon placental lipid processing and offspring metabolic health. Nutrients. 2020;12(10):3031. doi: 10.3390/nu12103031

[108]

Easton Z.J.W., Regnault T.R.H. The impact of maternal body composition and dietary fat consumption upon placental lipid proces¬sing and offspring metabolic health // Nutrients. 2020. Vol. 12, N. 10. P. 3031. doi: 10.3390/nu12103031

[109]

Johns EC, Denison FC, Reynolds RM. The impact of maternal obesity in pregnancy on placental glucocorticoid and macronutrient transport and metabolism. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2):165374. doi: 10.1016/j.bbadis.2018.12.025

[110]

Johns E.C., Denison F.C., Reynolds R.M. The impact of maternal obesity in pregnancy on placental glucocorticoid and macronutrient transport and metabolism // Biochim Biophys Acta Mol Basis Dis. 2020. Vol. 1866, N. 2. P. 165374. doi: 10.1016/j.bbadis.2018.12.025

[111]

Desoye G, Wells JCK. Pregnancies in diabetes and obesity: The capacity-load model of placental adaptation. Diabetes. 2021;70(4):823–830. doi: 10.2337/db20-1111

[112]

Desoye G., Wells J.C.K. Pregnancies in diabetes and obesity: The capacity-load model of placental adaptation // Diabetes. 2021. Vol. 70, N. 4. P. 823–830. doi: 10.2337/db20-1111

[113]

Dumolt JH, Powell TL, Jansson T. Placental function and the development of fetal overgrowth and fetal growth restriction. Obstet Gynecol Clin North Am. 2021;48(2):247–266. doi: 10.1016/j.ogc.2021.02.001

[114]

Dumolt J.H., Powell T.L., Jansson T. Placental function and the deve¬lopment of fetal overgrowth and fetal growth restriction // Obstet Gynecol Clin North Am. 2021. Vol. 48, N. 2. P. 247–266. doi: 10.1016/j.ogc.2021.02.001

[115]

Joshi NP, Mane AR, Sahay AS, Sundrani DP, Joshi SR, Yajnik CS. Role of placental glucose transporters in determining fetal growth. Reprod Sci. 2022;29(10):2744–2759. doi: 10.1007/s43032-021-00699-9

[116]

Joshi N.P., Mane A.R., Sahay A.S., et al. Role of placental glucose transporters in determining fetal growth // Reprod Sci. 2022. Vol. 29, N. 10. P. 2744–2759. doi: 10.1007/s43032-021-00699-9

[117]

Desoye G, Cervar-Zivkovic M. Diabetes mellitus, obesity, and the placenta. Obstet Gynecol Clin North Am. 2020;47(1):65–79. doi: 10.1016/j.ogc.2019.11.001

[118]

Desoye G., Cervar-Zivkovic M. Diabetes mellitus, obesity, and the placenta // Obstet Gynecol Clin North Am. 2020. Vol. 47, N. 1. P. 65–79. doi: 10.1016/j.ogc.2019.11.001

[119]

Castillo-Castrejon M, Yamaguchi K, Rodel RL, Erickson K, Kra¬mer A, Hirsch NM, Rolloff K, Jansson T, Barbour LA, Powell TL. Effect of type 2 diabetes mellitus on placental expression and activity of nutrient transporters and their association with birth weight and neonatal adiposity. Mol Cell Endocrinol. 2021;532:111319. doi: 10.1016/j.mce.2021.111319

[120]

Castillo-Castrejon M., Yamaguchi K., Rodel R.L., et al. Effect of type 2 diabetes mellitus on placental expression and activity of nutrient transporters and their association with birth weight and neonatal adiposity // Mol Cell Endocrinol. 2021. Vol. 532. P. 111319. doi: 10.1016/j.mce.2021.111319

[121]

Nogues P, Dos Santos E, Couturier-Tarrade A, Berveiller P, Arnould L, Lamy E, Grassin-Delyle S, Vialard F, Dieudonne MN. Maternal obesity influences placental nutrient transport, inflammatory status, and morphology in human term placenta. J Clin Endocrinol Metab. 2021;106(4):e1880–e1896. doi: 10.1210/clinem/dgaa660

[122]

Nogues P., Dos Santos E., Couturier-Tarrade A., et al. Maternal obesity influences placental nutrient transport, inflammatory status, and morphology in human term placenta // Clin Endocrinol Metab. 2021. Vol. 106, N. 4. P. e1880–e1896. doi: 10.1210/clinem/dgaa660

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (325KB)

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/