Cluster approach to identifying the 5-year prognosis of patients with chronic heart failure of ischemic etiology

Elena V. Khazova

Kazan medical journal ›› 2024, Vol. 105 ›› Issue (3) : 396 -406.

PDF (733KB)
Kazan medical journal ›› 2024, Vol. 105 ›› Issue (3) : 396 -406. DOI: 10.17816/KMJ624249
Theoretical and clinical medicine
research-article

Cluster approach to identifying the 5-year prognosis of patients with chronic heart failure of ischemic etiology

Author information +
History +
PDF (733KB)

Abstract

BACKGROUND: The phenotypic and pathophysiological heterogeneity of patients with chronic heart failure increases the interest of researchers in grouping according to similar clinical and genetic characteristics based on cluster analysis.

AIM: To identify phenotypic subgroups in a multivariate cohort of patients with chronic heart failure secondary to coronary artery disease using uncontrolled cluster analysis of clinical, instrumental and genetic components.

MATERIAL AND METHODS: 470 patients with chronic heart failure of functional class I–IV, stable course, ischemic etiology of both sexes at the age of 66.4±10.4 years were examined. A clinical study was conducted, genotyping single nucleotide polymorphisms rs10927875 of the ZBTB17 gene, rs247616 of the CETP gene, rs1143634 of the IL-1β gene, rs1800629 of the TNF gene, rs1800795 of the IL-6 gene was carried out, and patient outcomes were assessed for 5 years. Quantitative data were presented as mean and standard deviation or median and interquartile range; categorical — as frequencies and percentages. Categorical intergroup differences were tested using the χ2 test, and quantitative differences were tested using the Student/Mann–Whitney test. Hierarchical clustering was carried out according to 44 demographic, clinical, genetic variables, time to event was analyzed by the Kaplan–Meier method, risk ratio — by Cox regression. Statistical processing was carried out in the R4.3.1 program.

RESULTS: Two clusters of patients with heart failure were identified. Cluster 1 (66%) included older patients of both sexes, predominantly functional class III–IV chronic heart failure, with enlarged heart chambers, reduced left ventricular ejection fraction, higher heart rate, atrial fibrillation and left ventricular hypertrophy. In this cluster, more carriers of the GG genotype of the rs1800795 polymorphism of the IL-6 gene (p <0.001) and the CT genotype of the rs247616 polymorphism of the CETP gene (p=0.014) were identified. Cluster 2 (34%) was represented predominantly by younger women, with a higher metabolic index, a history of myocardial infarction and coronary intervention, smokers, and a larger proportion of the TT genotype of the rs247616 polymorphism of the CETP gene (p=0.029).

CONCLUSION: 2 clusters of patients with chronic heart failure, characterized by a different set of 44 variables that determine the risk of death from all causes, were identified.

Keywords

chronic heart failure / phenotype-based approach / forecast / cluster analysis

Cite this article

Download citation ▾
Elena V. Khazova. Cluster approach to identifying the 5-year prognosis of patients with chronic heart failure of ischemic etiology. Kazan medical journal, 2024, 105(3): 396-406 DOI:10.17816/KMJ624249

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Heinzel FR, Shah SJ. The future of heart failure with preserved ejection fraction: Deep phenotyping for targeted therapeutics. Herz. 2022;47(4):308–323. doi: 10.1007/s00059-022-05124-8

[2]

Heinzel F.R., Shah S.J. The future of heart failure with preserved ejection fraction: Deep phenotyping for targeted therapeutics // Herz. 2022. Vol. 47, N. 4. P. 308–323. doi: 10.1007/s00059-022-05124-8

[3]

Cleland JG, Pellicori P, Dierckx R. Clinical trials in patients with heart failure and preserved left ventricular ejection fraction. Heart Fail Clin. 2014;10(3):511–523. doi: 10.1016/j.hfc.2014.04.011

[4]

Cleland J.G, Pellicori P., Dierckx R. Clinical trials in patients with heart failure and preserved left ventricular ejection fraction // Heart Fail Clin. 2014. Vol. 10, N. 3. P. 511–523. doi: 10.1016/j.hfc.2014.04.011

[5]

Potabashniy VA. The phenotypes of chronic heart failure in patients with ischemic heart disease combined with chronic obstructive pulmonary disease. Medicni perspektivi. 2018;23(3):161–171. doi: 10.26641/2307-0404.2018.3(part1).142364

[6]

Potabashniy V.A. The phenotypes of chronic heart failure in patients with ischemic heart disease combined with chronic obstructive pulmonary disease // Medicni perspektivi. 2018. Vol. 23, N. 3. P. 161–171. doi: 10.26641/2307-0404.2018.3(part1).142364

[7]

Polunina EA, Voronina LP, Popov EA, Belyakova IS, Polunina OS, Tarasochkina DS. Prognostic algorithms for the progression of chronic heart failure depending on the clinical phenotype. Cardiovascular Therapy and Prevention. 2019;18(3):41–47. (In Russ.) doi: 10.15829/1728-8800-2019-3-41-47

[8]

Полунина Е.А., Воронина Л.П., Попов Е.А., и др. Прогностические алгоритмы прогрессирования хронической сердечной недостаточности в зависимости от клинического фенотипа // Кардиоваскулярная терапия и профилактика. 2019. Vol. 18, N. 3. P. 41–47. doi: 10.15829/1728-8800-2019-3-41-47

[9]

Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, Bonow RO, Huang CC, Deo RC. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–279. doi: 10.1161/ CIRCULATIONAHA.114.010637

[10]

Shah S.J., Katz D.H., Selvaraj S., et al. Phenomapping for novel classification of heart failure with preserved ejection fraction // Circulation. 2015. Vol. 131, N. 3. P. 269–279. doi: 10.1161/CIRCULATIONAHA.114.010637

[11]

Sun J, Guo H, Wang W, Wang X, Ding J, He K, Guan X. Identifying novel subgroups in heart failure patients with unsupervised machine learning: A scoping review. Front Cardiovasc Med. 2022;9:895836. doi: 10.3389/fcvm.2022.895836

[12]

Sun J., Guo H., Wang W., et al. Identifying novel subgroups in heart failure patients with unsupervised machine learning: A scoping review // Front Cardiovasc Med. 2022. Vol. 9. P. 895836. doi: 10.3389/fcvm.2022.895836

[13]

Cohen JB, Schrauben SJ, Zhao L, Basso MD, Cvijic ME, Li Z, Yarde M, Wang Z, Bhattacharya PT, Chirinos DA, Prenner S, Zamani P, Seiffert DA, Car BD, Gordon DA, Margulies K, Cappola T, Chirinos JA. Clinical phenogroups in heart failure with preserved ejection fraction: Detailed phenotypes. Prognosis, and Response to Spironolactone. JACC Hear Fail. 2020;8:172–184. doi: 10.1016/j.jchf.2019.09.009

[14]

Cohen J.B., Schrauben S.J., Zhao L., et al. Clinical phenogroups in heart failure with preserved ejection fraction: Detailed phenotypes. Prognosis, and response to Spironolactone // JACC Hear Fail. 2020. Vol. 8. P. 172–184. doi: 10.1016/j.jchf.2019.09.009

[15]

Woolley RJ, Ceelen D, Ouwerkerk W, Tromp J, Figarska SM, Anker SD, Dickstein K, Filippatos G, Zannad F, Marco M, Ng L, Samani N, van Veldhuisen DJ, Lang C, Lam CS, Voors AA. Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection fraction. Eur J Heart Fail. 2021;23:983–991. doi: 10.1002/ejhf.2144

[16]

Woolley R.J., Ceelen D., Ouwerkerk W., et al. Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection fraction // Eur J Heart Fail. 2021. Vol. 23. P. 983–991 doi: 10.1002/ejhf.2144

[17]

Tsygankova OV, Veretyuk VV. Phenotypic clusters in heart failure with preserved and mid-range ejection fraction: new data and perspectives. Russian Journal of Cardiology. 2021;26(4):4436. (In Russ.) doi: 10.15829/1560-4071-2021-4436

[18]

Цыганкова О.В., Веретюк В.В. Фенотипические кластеры пациентов с хронической сердечной недостаточностью с сохранённой и промежуточной фракцией выброса: новые данные и перспективы // Российский кардиологический журнал. 2021. Т. 26, № 4. С. 4436. doi: 10.15829/1560-4071-2021-4436

[19]

Mareev VYu, Fomin IV, Ageev FT, Begrambekova YuL, Vasyuk YuA, Garganeeva AA, Gendlin GE, Glezer MG, Gautier SV, Dovzhenko TV, Kobalava ZD, Koziolova NA, Koroteev AV, Mareev YuV, Ovchinnikov AG, Perepech NB, Tarlovskaya EI, Chesnikova AI, Shevchenko AO, Arutyunov GP, Belenkov YuN, Galyavich AS, Gilyarevsky SR, Drapkina OM, Duplyakov DV, Lopatin YuM, Sitnikova MYu, Skibitsky VV, Shlyakhto EV. Russian Heart Failure Society, Russian Society of Cardiology. Russian Scientific Medical Society of Internal Medicine Guidelines for Heart failure: Chronic (CHF) and acute decompensated (ADHF). Diagnosis, prevention and treatment. Kardiologiia. 2018;58(6S):8–158. (In Russ.) doi: 10.18087/cardio.2475

[20]

Мареев В.Ю., Фомин И.В., Агеев Ф.Т., и др. Клинические рекомендации ОССН — РКО — РНМОТ. Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика и лечение // Кардиология. 2018. Т. 58, № 6S. С. 8–158. doi: 10.18087/cardio.2475

[21]

Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am J Cardiol. 1986;57(6):450–458. doi: 10.1016/0002-9149(86)90771-x

[22]

Devereux R.B., Alonso D.R., Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings // Am J Cardiol. 1986. Vol. 57, N. 6. P. 450–458. doi: 10.1016/0002-9149(86)90771-x

[23]

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502. doi: 10.1093/clinchem/18.6.499

[24]

Friedewald W.T., Levy R.I., Fredrickson D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge // Clin Chem. 1972. Vol. 18, N. 6. P. 499–502. doi: 10.1093/clinchem/18.6.499

[25]

Roytberg GE, Dorosh ZhV, Sharkhun OO, Ushakova TI, Trubino EA. New metabolic index use potentialities in evaluation of insulin resistance in clinical practice. Ratsional'naya farmakoterapiya v kardiologii. 2014;10(3):264–274. (In Russ.) EDN: SHBHZB

[26]

Ройтберг Г.Е., Дорош Ж.В., Шархун О.О., и др. Возможности применения нового метаболического индекса при оценке инсулинорезистентности в клинической практике // Рациональная фармакотерапия в кардиологии. 2014. Т. 10, № 3. С. 264–274. EDN: SHBHZB

[27]

Smirnov AV, Shilov EM, Dobronravov VA, Kayukov IG, Bobkova IN, Shvetsov MYu, Tsygin AN, Shutov AM. National recommendations. Chronic kidney disease: basic principles of screening, diagnosis, prevention and treatment approaches. Nefrologiya. 2012;16(1):89–115. (In Russ.) EDN: NJWAGE

[28]

Смирнов А.В., Шилов Е.М., Добронравов В.А., и др. Национальные рекомендации. Хроническая болезнь почек: основные принципы скрининга, диагностики, профилактики и подходы к лечению // Нефрология. 2012. Т. 16, № 1. С. 89–115. EDN: NJWAGE

[29]

Segar MW, Patel KV, Ayers C, Basit M, Tang WHW, Willett D, Berry J, Grodin JL, Pandey A. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur J Heart Fail. 2020;22(1):148–158. doi: 10.1002/ejhf.1621

[30]

Segar M.W., Patel K.V., Ayers C., et al. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis // Eur J Heart Fail. 2020. Vol. 22, N. 1. P. 148–158. doi: 10.1002/ejhf.1621

[31]

Kyodo A, Kanaoka K, Keshi A, Nogi M, Nogi K, Ishihara S, Kamon D, Hashimoto Y, Nakada Y, Ueda T, Seno A, Nishida T, Onoue K, Soeda T, Kawakami R, Watanabe M, Nagai T, Anzai T, Saito Y. Heart failure with preserved ejection fraction phenogroup classification using machine learning. ESC Heart Fail. 2023;10(3):2019–2030. doi: 10.1002/ehf2.14368

[32]

Kyodo A., Kanaoka K., Keshi A., et al. Heart failure with preserved ejection fraction phenogroup classification using machine learning // ESC Heart Fail. 2023. Vol. 10, N. 3. P. 2019–2030. doi: 10.1002/ehf2.14368

[33]

Stienen S, Ferreira JP, Kobayashi M, Preud'homme G, Dobre D, Machu JL, Duarte K, Bresso E, Devignes MD, López N, Girerd N, Aakhus S, Ambrosio G, Brunner-La Rocca HP, Fontes-Carvalho R, Fraser AG, van Heerebeek L, Heymans S, de Keulenaer G, Marino P, McDonald K, Mebazaa A, Papp Z, Raddino R, Tschöpe C, Paulus WJ, Zannad F, Rossignol P. Enhanced clinical phenotyping by mechanistic bioprofiling in heart failure with preserved ejection fraction: Insights from the MEDIA-DHF study (The Metabolic Road to Diastolic Heart Failure). Biomarkers. 2020;25(2):201–211. doi: 10.1080/1354750X.2020.1727015

[34]

Stienen S., Ferreira J.P., Kobayashi M., et al. Enhanced clinical phenotyping by mechanistic bioprofiling in heart failure with preserved ejection fraction: Insights from the MEDIA-DHF study (The Metabolic Road to Diastolic Heart Failure) // Biomarkers. 2020. Vol. 25, N. 2. P. 201–211. doi: 10.1080/1354750X.2020.1727015

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (733KB)

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/